
15-411 Compiler Design, Fall 2015

Lab 6 - Garbage Collection

Rob Simmons, Will Crichton, Grant Della Silva, Matt Bryant, Anshu Bansal

Due 11:00pm, Thursday, December 10, 2015
Papers due 11:00pm, Tuesday, December 15, 2015

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes the
option of implementing garbage collection; other writeups detail other options. The language L4
does not change for this lab and remains the same as in Labs 4 and 5.

2 Requirements

You are required to hand in three separate items:

1. The working compiler and runtime system that implement optimizing transformations,

2. a testing framework, and

3. a term paper describing and critically evaluating your project.

2.1 Garbage Collecting Compiler and Runtime

Your compilers should treat the language L4 as in Labs 4 and 5. It is not necessary to support
the --unsafe flag or any optimization flags for this assignment. You have complete freedom which
kind of garbage collector to implement. A garbage collector will consist of the compiler proper
and the runtime system. The interface from the compiled code to the runtime system should be
part of your design. Reasonable choices are a mark-and-sweep or a copying collector, but even a
conservative collector is acceptable. Incremental or generational collectors are significantly harder
and should only be attempted if you already have a basic collector working.

Grading criteria includes:

1. Functional correctness is paramount. You should not mutate the heap in such a way as to
result in the incorrect execution of programs. Your compiler should continue to function
correctly, despite any changes to the binary interface you use to interface with the garbage
collector.

2. Developing a convincing framework for understanding and quantifying the performance of
your garbage collector is also a priority.

1



3. The absence of memory leaks comes second. A garbage collector that takes a whole lot of
processor time is not of much use if it cannot effectively collect parts of the heap that are no
longer referenced. However, conservative collectors may not be able to reclaim all memory.

4. Performance is a distant third – actual performance has a very minor effect on your grade.
Optimizations to garbage collectors require a significant amount of time. Therefore, we
recommend that you avoid premature optimizations.

2.2 Tests and Measurement Tools

At minimum, your testing must sufficient to provide strong evidence of two things:

1. Your garbage collector does not corrupt the heap, and does not leak memory.

2. Your garbage collector allows programs to run that would otherwise have failed due to lack
of resources.

To this end, feel free to search through all of the test cases that we have accumulated through this
semester for programs that are both realistic and usefully contrived to assemble a test suite. You
will need to write contrived test cases designed specifically to ensure that your garbage collector goes
through several collection cycles without corrupting the heap or leaking any memory. You will also
need to run your compiled programs in an environment where memory is artificially constrained.
You will be graded on how well you test your garbage collector.

2.3 Something Extra

Beyond the basic implementation and perfunctory analysis described above, an excellent final
project will include a little something extra. Exactly what your “something extra” is is up to
you, but it should represent a different direction, rather than (just) being an incremental or gener-
ational version of the collector you implemented.

One category of “something extra” ideas involves going beyond the perfunctory analysis de-
scribed above and doing a significant quantitative analysis of your garbage collector’s performance.
These are couple of (non-exhaustive) suggestions:

• Compare the performance of multiple garbage collection strategies. Note that this requires
implementing multiple garbage collection strategies, which is rather ambitious!

• Compare the performance of your compiler to the Boehm-Demers-Weiser conservative collec-
tor used by the reference compiler, which can be used as a drop-in replacement for malloc().
You can do this either by compiling with the reference compiler and runtime or by obtaining
the Boehm-Demers-Weiser collector (see http://www.hboehm.info/gc/).

• Extend L4 with manual memory management using a built-in free() function that accepts
any pointer or array type. Compare the performance of the manual and garbage-collected
memory management.

• Analyze the way in which performance is influenced by varying the total amount of memory
available to your program. (You can measure performance both in terms of total running
time and in terms of total number of collections.)

2

http://www.hboehm.info/gc/


Another way to do something extra is to explore a language feature that is enabled by garbage
collection:

• Implement weak pointers, references that do not keep the allocations they point to from being
reclaimed. In order to preserve memory safety, it must always be possible to determine if the
target of a weak pointer has been reclaimed. Demonstrate an interesting program using weak
pointers. (See section 7.1 of the Wilson review.)

• Implement finalizers, functions that are associated with a specific pointer or a specific type
of pointer and that run when the pointer is freed by garbage collection. Demonstrate an
interesting program using finalizers. (See section 7.2 of the Wilson review.)

• Implement a leak detector: use your garbage collection infrastructure to explore a safe imple-
mentation of free() that always safely detects double-frees (signaling a memory error) and
reports the number of un-freed allocations when the program exits.

2.4 Term Paper

Your paper should follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2. Compilation. Describe the data structures, code, and information generated by the compiler
in order to support the garbage collector. If applicable, describe the syntax and semantics of
new language features.

3. Runtime System. Describe the runtime system of the garbage collector, giving details of the
algorithms and also its implementation (most likely in C).

4. Testing Methodology. Describe the criteria based on which you selected and designed your
tests, and explain how you use them to verify the functionality of your garbage collector.

5. Analysis. Critically evaluate your collector and sketch future improvements one might make
to its basic design.

The term paper will be graded. There is no hard limit on the number of pages, but we expect
that you will have approximately 5-10 pages of reasonably concise and interesting analysis to
present.

3



3 Deadlines and Deliverables

All your code should be placed in subdirectories of the lab6gc directory as before. The autograder
will run regression tests against your own tests and the same tests it used in Lab 5, but these will
not directly contribute to your grade. (In particular, we don’t care if there are lots of timeouts.)
We will grade you based on the code and README file(s) you have checked in at the deadline.

Compiler Files (due 11:00pm on Thu Dec 10)

All files should be collected in a directory compiler/ which should contain a Makefile. Impor-
tant: You should also update the README file and insert a roadmap to your code. This will be a
helpful guide for the grader.

Issuing the shell command

% make

should generate the appropriate files so that

% bin/c0c --exe <args>

will run your compiler in safe mode with support for garbage collection. It is not necessary to
continue supporting any compiler flags besides -t.

After running make, issuing the shell command

% make test

should run all your own tests and print out informative output. The command

% make clean

should remove all binaries, heaps, and other generated files.

Runtime environment (due 11:00pm on Thu Dec 10)

You will need to extend the run411.c runtime file and/or write new runtime files to implement
garbage collection. All necessary runtime files should be included in the lab6gc/compiler/ direc-
tory (or a subdirectory) for this assignment.

Because we don’t know exactly how your runtime works, your compiler should have an additional
flag --exe. If compiler is given a well-formed input file foo.l1 or foo.l2 as a command-line
argument and is also given the --exe argument, it should generate a target file called foo.l1.s

or foo.l2.s (respectively) in the same directory as the source file, and should also compile the
garbage collector and runtime and link your generated assembly to create an executable foo.l1.exe
or foo.l2.exe (respectively).

Your README should explain how your compiler implements the --exe option, and should also
explain how to link other runtimes and how to use any other command-line options used by the
compiler or by the generated programs. For example, you may want a command-line argument
accepted by either the compiler or the generated executable that determines how much heap space
the executable is allowed to use.

4



Tests and Measurement Tools (due 11:00pm on Thu Dec 10)

All tests you develop should be submitted in a directory called lab6gc/tests/. If they are to be
used in a different way than a vanilla L4 test, you should include a README file explaining exactly
how to use your tests, and make test should run your tests.

If you modify the autograder driver as part of your testing, or develop any other shell scripts that
facilitate testing, you should include these in the lab6gc/compiler/ directory (or a subdirectory).
If there are any special instructions we need to follow in order to be able to run the driver on your
compiler and test it, specify these instructions in your README file.

3.1 Term Paper (due 11:00pm on Tue Dec 15)

Submit your term paper in PDF form via Autolab before the stated deadline. Early submissions are
much appreciated since it lessens the grading load of the course staff near the end of the semester.
You may not use any late days on the term paper describing your implementation of
Lab 6!

4 Notes and Hints

• Limit optimizations. Garbage collection is easier if fewer optimization are applied to the code,
especially where memory references are concerned. In order to concentrate on the garbage
collector it is probably a good idea to stay away from optimizations altogether.

• Apply regression testing. It is very easy to get caught up in the new functionality.

• Copying vs. mark-and-sweep collector. Experience in previous years indicates that a copying
collector is easier to implement for our language than a mark-and-sweep collector because the
data structures are simpler.

5


	Introduction
	Requirements
	Garbage Collecting Compiler and Runtime
	Tests and Measurement Tools
	Something Extra
	Term Paper

	Deadlines and Deliverables
	Term Paper (due 11:00pm on Tue Dec 15)

	Notes and Hints

