15-411 Compiler Design, Fall 2015
Lab 6 - CO and Beyond

Rob Simmons, Will Crichton, Grant Della Silva, Matt Bryant, Anshu Bansal

Tests due 11:00pm, Thursday, December 3, 2015
Due 11:00pm, Thursday, December 10, 2015
Papers due 11:00pm, Tuesday, December 15, 2015

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes the
option of extending your L4/L5 compiler with new language features; other writeups detail other
options. The basic languages you deal with in this lab are called L5 and L6 instead of CO or C1
because they may still lack support for some contracts and for #use compiler directives (the latter
being handle by command-line arguments as in L4).

With a preprocessor that collects and inline compiler directives, your implementation should
be able to compile almost all code from 15-122 and more.

2 The L5 Language

The point of this section is to establish a common baseline for all language extension projects by
implementing two new primitive types, char and string. Both should be treated as small types.

2.1 Characters

Characters are a special type to represent components of strings. They are written in the form ’c’,
where ¢ can be any printable ASCII character, as well as the following escape sequences \t (tab),
\r (return), \f (formfeed), \a (alert), \b (backspace), \n (newline), \v (vertical tab), \’ (quote),
\" (doublequote), \O (null). The default value for characters is \0. Characters can be compared
with ==, = < <= >= > according to their ASCII value, which is always in the range from 0 to
127, inclusively.

Characters should be represented in memory as a 1-byte word. They do not need to be aligned.

2.2 Strings

Strings have the form "c1...cn", where cy,...,c, are ASCII characters as above, including the
legal escape sequences except for NUL (\0), which may not appear in strings. The double-quote
character itself " must be quoted as \" so it is not interpreted as the end of the string. The default
value for type string is the empty string "". Strings can not be compared directly with comparison
operators, because in a language such as C the comparison would actually apply to the addresses of

the strings in memory, with unpredictable results. Appropriate comparison functions are provided
by the string library. Unlike C strings, L5 strings cannot be modified.

You should put some thought into how strings are represented at runtime. The C library
implementation you are given (see below) represents string values as pointers to NUL-terminated
character sequences, as in C. You can change the implementation of strings if you change the
corresponding runtime. You should also be thoughtful about how you deal with constant strings.
Ideally these should be allocated in the text part of your compiled binary; check out the way how
gce handles strings. The choices you make should be documented in your project report.

2.3 Library Interface

Several of the standard CO libraries, namely conio, string, and file, together with the earlier
library, are collected into the runtime; when we call you compiler we will supply the command-line
arguments -1 ../runtime/15411-15.hO0.

Because the library now contains characters, strings, and arrays, the layout of certain data
structures must be more precisely specified than in Lab 4. We have:

Co C

int int (4 bytes)

bool bool (1 byte, from stdbool.h)

char char (1 byte)

string | charx (8 byte pointer to NUL-terminated string)
t* (8 bytes)

t[] (8 bytes, see below)

Arrays are represented as described in lecture: as a pointer a to the first data element of the array,
where the number of elements in the array are stored in the four bytes beginning at the address
a — 8. Please see the library implementation in run411.c for more detail. Note that, because the
library includes array-bounds checks, it can only be used with safe mode. As a consequence, you
are not required to implement the --unsafe flag for this assignment. If you do implement the
--unsafe flag, it will need to be compiled against a different runtime.

You may include a different runtime and have your compiler link against that runtime instead.
However, you must support 15411-c1.h0, since it is used to type-check L5 sources.

3 The L6 Language

Simply implementing the L5 language is not sufficient for passing the final project. The point of
this section is to describe how to build on the L5 language to make a compelling final project.

You are expected to follow the outline described in one of the sections below. Each approach
contains a basic extension that, if done well, will give you a passing grade on the final project,
as well as some suggestions on how to approach doing something extra. You are expected do
something extra to get full credit on the final project.

Any one of these projects requires you to make decisions at every level of the language: the static
and dynamic semantics, the compilation strategies, and potentially the runtime. Your designs and
design decisions will need to be carefully documented and critically examined in your term paper.

3.1 Contracts

Contracts are an important part of CO that does not exist in any of the languages discussed in this
class. Contracts exist within either multi-line declarations /*@ ... @*/ or single line declarations
that begin with //@ and end with a newline character. Lexing is modified within contracts: the @
character is treated as whitespace. Aside from that, contracts have the following forms:

<anno> ::= //@ <spec>* \n
/%0 <spec>* 0x/

<spec> ::= requires <exp> ;
| ensures <exp> ;
| loop_invariant <exp> ;
| assert <exp> ;
<stmt> ::= . | <anno>+ <stmt>
<exp> = | \result | \length (<exp>)

<gdecl> ::= ...
| <type> ident <param-list> <anno>+ <block>

This grammar introduces an ambiguity, because /*@ s1 @*/ /*@ s2 @*/ s3 could either be:
e a twice-annotated statement, same as /*@ s1 s2 @*/ s3
e an annotated statement with an annotation, same as /*@ s1 @+/ { /*x@ s2 @*x/ s3 }

This is always resolved in favor of having a twice-annotated statement. Furthermore, the following
restrictions apply:

e loop_invariant contracts are the only contracts that can annotate a loop body.
e assert contracts are the only contracts that can annotate other statements.

e requires and ensures contracts can only appear immediately before the initial “{” token in
a function definition.

e The expression \result can only appear within a ensures contract; it represents the value
of the function upon exit.

e The expression \length(e) can only appear in contracts. It takes an array as its argument,
and allows contract code to access the length of an array.

Compared to C0, you probably do not want to support annotations on function declarations.
Files in the testsC/ directory describe provide some examples of correct and incorrect uses of casts.

A runtime flag, -d, means that all contracts are turned into assertions in the compiled code.
When this flag is omitted, all contracts are still typechecked, but they are removed from the code
after typechecking.

In addition to supporting contracts, you are expected to do something extra. Here’s a couple
of examples of what an project based on this extension might look like:

e Extend the language with new syntax designed to be used in contracts (possibly only in
contracts) and give examples to show that it is useful. One example: it is not possible to
write the loop invariant “all Afi] for 0 < i < n are less than 2” without writing a helper

function. Array comprehension syntax might help with this. Another example: it is not
possible to write a contract in CO that checks that an in-place sorting function returns a
permutation of the original array. Can you design a language extension that addresses this?

e Implement a variant purity checking, which ensures that contracts will not modify memory
that can be read outside of the contract. You will probably need your purity checker to reject
many programs that the reference compiler accepts; your report should discuss and analyze
any differences you find.

e Develop a “semi-safe” mode that assumes that all contracts succeed and uses that assump-
tion to perform optimizations (like removing array bounds checks) based on the presence of
contracts, but then does not check those contracts at runtime. Demonstrate performance
improvements over safe mode for examples where you can prove (on paper) that all array
bounds checks succeed.

3.2 Generic Pointers

We have a new form expression, a cast, which is used only in a very specific way.
<exp> ::= ... | (<tp>) <exp>

The form (void*)e casts the expression e of type t* to be of type void*. Operationally, this
new pointer references a pair consisting of a runtime representation of the type ¢* (the tag) and
the pointer value of e.

The second form (t*)e where t # void casts an expression e of type void* to have type t *. If
the tag agrees with the type ¢ *, it strips off the tag and returns the underlying pointer of type ¢ *.
If the tags do not agree, a memory error is raised and the program is terminated. Casting does not
affect the null pointer, which remains NULL and serves as the default value of type void*. Files in
the testsG/ directory provide some examples of correct and incorrect uses of casts.

In unsafe mode (if you support it), the casts only have significance at compile-time and no
tagging or untagging will be performed, because it is assumed that the tag would match. In order
to support unsafe mode, it should be impossible for the programmer to learn what tag something
has, just like it is not possible to check the length of an array.

In addition to supporting generic pointers, you are expected to do something extra. Here’s one
example of what an project based on this extension might look like:

e The 15-122 take on object oriented programming requires both generic pointers and function
pointers, so that structs can contain both data and instructions for how to interpret that
data.

Another approach to object-oriented programming is to allow functions to be associated with
particular pointer or struct types. Then, if we call the hash function on a generic pointer that
was originally an struct rope*, we can look up, at runtime, to see how ropes are supposed
to be hashed. If there’s no hash function associated with struct rope pointers, this should
cause a Memory error.

The really interesting feature of this approach is that it’s possible for a hash table implemen-
tation to hash generic pointers that it contains without ever knowing what tag those generic
pointers have.

Design a reasonable syntax, semantics, and implementation of generic data structures that
uses these ideas. Implement a generic hash table.

3.3 Function Pointers

We add a new unary prefix operator & pronounced “address of”, which can only be applied to
functions and has the same precedence as other unary prefix operators such as *. We can dereference
a function pointer and apply it to a sequence of arguments with a new form of function call.

<unop> ::= ... | &
<exp> ::= ... | (x <exp>) ([<exp> (, <exp>)*])

In order to use function pointers we need to be able to assign them types. For this purpose, we
allow a particular idiomatic use of typedef which is consistent with but much more restrictive than
C and declares a function type name <fnid> which occupies the same name space as (ordinary)
type names.

<gdefn> ::= ...
| typedef <tp> <fnid> ([<tp> <vid> (, <tp> <vid>)*]) ;
<tp> ::= ... | <fnid>

Note that this is exactly the same form as a function declaration (also called a function proto-
type) preceded by the typedef keyword.

Function types, named by a <fnid> are large types and, moreover, function values cannot be
allocated on the stack or heap. That is, we store and pass only pointers to functions, not functions
themselves. Function type names in C1 are treated mominally, which means that two distinct
function type names are considered different, even if their definitions happen to be the same. You
can support this or not, but you should explain your decision in your project report.

Files in the testsF/ directory provide some examples of correct and incorrect uses of function
pointers.

In addition to supporting function pointers, you are expected to do something extra. Here’s
one example of what an project based on this extension might look like:

e In addition to the & syntax for creating function pointers, allow anonymous functions to be cre-
ated by defining a new form of expression fn ([<tp> <vid> (, <tp> <vid>)*]) <block>
that evaluates to a function pointer. These anonymous functions should be allowed to refer to
temps in the function(s) that they are declared within, which means that the runtime value
of a function will need to be a closure containing a function pointer, instead of just a function
pointer.

4 Requirements

You are required to hand in three separate items:
1. Additional test cases that explore the novel features of L5/L6,
2. the working compiler and runtime system for L5 /L6,

3. a term paper describing and critically evaluating your project.

4.1 Tests

The tests should be concerned with verifying that your compiler is correct on characters, strings,
generic pointers, and function pointers.

4.2 Compilers

Your compilers should treat the language as you’ve extended it as described below. You need only
implement safe mode. Unsafe mode is optional and may require a separate implementation of the
library.

4.3 Term Paper

Your paper should follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2. Extensions. Carefully describe the syntax and semantics of the extensions to your language.

3. Compilation. Describe the data structures, code, and information generated by the compiler
in order to support the new language features.

4. Examples. Walk through several code examples that demonstrate the power of your language
extensions.

5. Analysis. Critically evaluate the language, your compiler and runtime system and sketch
future improvements one might make to its design.

The term paper will be graded. There is no hard limit on the number of pages, but we expect
that you will have approximately 5-10 pages of reasonably concise and interesting analysis to
present.

5 Deadlines and Deliverables

All your code should be placed in subdirectories of the lab6c1 directory as before. The autograder
will run regression tests against your own tests, the same tests it used in Lab 5, and L5 tests
submitted by other groups doing the same project. These tests will not directly contribute to your
grade. We will grade you based on the code and README file(s) you have checked in at the deadline.

Test Files (due 11:00pm on Tue Dec 3)

In a directory tests/, you should turn in at least 10 tests named $name.15 that deal with charac-
ters, strings, and the new libraries, at least 10 tests named $name.16 that deal with the basic L6
extensions to your language, and at least 10 tests named $name.16 that deal with the L6 extensions
that you designed.

It is okay if you have to modify your L6 tests as you work on your compiler. If you need to
change anything besides a typo, make sure to mention it in your project report.

Compiler Files (due 11:00pm on Thu Dec 10)

The files comprising the compiler should be collected in a directory compiler/ which should con-
tain a Makefile. Important: You should also update the README file with a roadmap to your
implementation. This will be a helpful guide for the grader.

Issuing the shell command

% make
should generate the appropriate files so that
% bin/cOc --exe <args>

will run your compiler and produce an executable. It is not necessary to continue supporting any
compiler flags besides -t.
After running make, issuing the shell command

% make test
should run your own tests and print out informative output. The command
% make clean

should remove all binaries, heaps, and other generated files.

All files should be collected in a directory compiler/ which should contain a Makefile and a
library file 15411c1.c. Important: You should also update the README file and insert a roadmap
to your code. This will be a helpful guide for the grader.

Runtime environment (due 11:00pm on Thu Dec 10)

Because you may have implemented a new runtime, your compiler should have an additional flag
--exe. If your compiler is given a well-formed input file foo.11 or foo0.12 as a command-line
argument and is also given the ——exe argument, it should generate a target file called foo.11.s or
foo.12.s (respectively) in the same directory as the source file, and should also compile the runtime
and link it with your generated assembly to create an executable foo.l1l.exe or foo.l2.exe
(respectively). We will test your compiler against the regression suite, but the grade reported by
the autograder won’t directly contribute to your grade.

Term Paper (due 11:59pm on Tue Dec 15)

Submit your term paper in PDF form via Autolab before the stated deadline. Early submissions are
much appreciated since it lessens the grading load of the course staff near the end of the semester.
You may not use any late days on the term paper describing your implementation of
Lab 6!

	Introduction
	The L5 Language
	Characters
	Strings
	Library Interface

	The L6 Language
	Contracts
	Generic Pointers
	Function Pointers

	Requirements
	Tests
	Compilers
	Term Paper

	Deadlines and Deliverables

