Assignment 3: Middle End

15-411: Compiler Design
Rob Simmons, Will Crichton, Grant Della Silva, Matt Bryant, Anshu Bansal

Due Thursday, October 15, 2015 (11:00pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be
all your own. Hand in your solutions as a PDF file on Autolab. Please read the late policy
for written assignments on the course web page.

Problem 1: Stuck in the Middle (60 points)

We generate a Collatz sequence c;, starting from some positive integer n, with the following
mathematical definition:
apg—=mn

a;/2 if a; is even
aj41 = .
3a; +1 otherwise

The stopping time of a Collatz sequence is the smallest index i such that a; = 1. Itis currently
not known if every Collatz sequence reaches 1 (and thereby stops). The following CO
function is intended to compute the maximum number in the Collatz sequence for n before
it stops.

int collatz(int n)
//@requires n >= 1;
{
int r = 0;
while (n > 1) {
if (@ >r) r = n;
if (n % 2 ==0)

n=n/2;
else
n = 3%n + 1;
}
return r;

¥

ASSIGNMENT 3 THURSDAY, OCTOBER 15, 2015 (11:00PM)

Middle End A3.2

(a) Compile this program to an intermediate representation with labels, infinite temps,
and arbitrary nested expressions, but only gotos (goto Lab) and conditionals (if el 7
e2 then Labl else Lab2). You do not need to follow a specific code generation algo-
rithm, but the correspondence of the source to the intermediate representation should
be direct and easy to discern. The code should be arranged in basic blocks that begin
with a label and end with a goto, conditional, or return.

(b) Compile your intermediate representation to abstract three-address assembly code
with infinite temps but without nested expressions. Your code should still be arranged
into basic blocks.

(c) Show the control flow graph of the program in (b) pictorially, carefully encapsulating
each basic block. Label each basic block with the label from the abstract assembly code.

(d) Convert the abstract assembly program into SSA with parameterized labels.

(e) Rearrange the SSA program to use ®-functions.

(f) Transform your SSA code into minimal SSA, removing unnecessary ®-functions.

(g) Transform your code out of SSA with ®-functions and back into SSA with parameter-
ized labels.

(h) Apply the de-SSA transformation to obtain a program where labels are no longer pa-
rameterized.

(i) Modify this code to use extended basic blocks, where every label is the target of more
than one jump. (Aside: you could have transformed your code into extended basic
blocks after step (a) or after step (b). How would this have influenced later stages?)

() If we are not interested in the maximum value in the sequence, but just a confirma-
tion that it stopped, we can transform the program by replacing the last line with
return 0. Apply neededness analysis from lecture and show which code will be flagged
as not needed. Clearly indicate where temps are defined and used, and which temps are
needed on which lines. You do not need to show intermediate steps, only your final
answetr, but it is easier to assign partial credit if you show your work.

(k) Even if we assume that integers are infinite-precision, the original code for collatz
has a bug. Describe and fix this bug in the source.

ASSIGNMENT 3 THURSDAY, OCTOBER 15, 2015 (11:00PM)

