
Assignment 2: Lexing and Parsing

15-411: Compiler Design
Rob Simmons, Will Crichton, Grant Della Silva, Matt Bryant, Anshu Bansal

Due Thursday, October 1, 2015 (11:00pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must
be all your own. Hand in your solutions as a PDF file on Autolab. Please read the late
policy for written assignments on the course web page.

Problem 1: Lexing (20 points)

(a) In class, we discussed how lexers can use regular expressions to parse an input cor-
pus into tokens. A common way of implementing a regular expression parser is with
deterministic finite automata, or DFAs, which you might have seen in 251 or FLAC1.
For example, the DFA for the regex ban(an)*a would be:

s0
b a n a

a

n

Anshu has decided to create a new language Cnaught which is startlingly similar to
C0 but utilizes new and exciting tokens. To lex his identifiers, he hand-crafts the
following DFA which accepts a language L over the alphabet Σ = {a, b}.

s0

a

b

b

a

b

b

a

a

a

b

b

a

b

a

1To learn more about DFAs, you can read about it in the textbook or ask the TAs. Seriously,
our office hours aren’t very busy. Also check out this neat site: http://hackingoff.com/compilers/

regular-expression-to-nfa-dfa

ASSIGNMENT 2 THURSDAY, OCTOBER 1, 2015 (11:00PM)

http://hackingoff.com/compilers/regular-expression-to-nfa-dfa
http://hackingoff.com/compilers/regular-expression-to-nfa-dfa

Lexing and Parsing A2.2

Help Anshu simplify his language specification by finding a simple regular expres-
sion that accepts L. Note that although a DFA is required to a transition for every
character in Σ defined for every state, we omit certain transitions for brevity—these
enter a permanent failure state, i.e. a string that enters (like “aa” in the above DFA)
it is guaranteed to never be accepted.

(b) Rob stumbles across Anshu’s new language specification and thinks to himself, “Wow,
this whole lexing business is far too simple.” Reminiscing on his old SIGBOVIK days,
Rob makes a new languageCℵ0 which requires that all identifiers must be of the form
anbncn for n > 0. However, Rob quickly finds that his old regular expression-based
lexer generator won’t properly lex these identifiers. Identify the limitation of Rob’s
lexer generator and briefly describe the kind of tool he needs to solve this problem.

Problem 2: Parsing (40 points)

After Rob’s disastrous foray into lexing, Matt figures he’s safe by just writing a context free
grammar for his new language, Cλ0 which combines all the usability of lambda calculus
with all the safety of C. He specifies it with the following productions (note that x is an
identifier token and n is a number token):

γ1 : 〈E〉 → n
γ2 : 〈E〉 → x
γ3 : 〈E〉 → lam x . 〈E〉
γ4 : 〈E〉 → 〈E〉 〈E〉
γ5 : 〈E〉 → (〈E〉)
γ6 : 〈E〉 → 〈E〉 ⊕ 〈E〉

(a) Matt gets Grant’s pet bison to review his grammar and uncovers a number of prob-
lems. Show two ambiguities in the above grammar by providing for each ambiguity
two possible parse trees for the same string.

(b) Will’s company Compilers-R-Us is seeking to acquire Matt’s revolutionary new lan-
guage, but the terms of the acquisition require that the grammar is unambiguous.
Help Matt achieve his billion dollar buyout and rewrite the grammar so it is unam-
biguous2. For each ambiguity you found in (a), identify which of the two parse trees
will be accepted by your new grammar.

(c) Not content to let the TAs have all the fun, you set out to write your own gram-
mar, but run into some familiar pitfalls. Describe an unambiguous grammar G that
contains a reduce/reduce conflict in a shift-reduce parser with lookahead 1. The lan-
guage L(G) must be context free, but not regular. You may use your parser generator
of choice to help.

(d) Prove that the reduce/reduce conflict in (c) exists using the example from the notes.

2Hint: your new grammar may not have the precedence you’d expect from lambda calculus.

ASSIGNMENT 2 THURSDAY, OCTOBER 1, 2015 (11:00PM)

