
Recitation 9:
Polymorphism

15-312: Principles of Programming Languages

Wednesday, March 19, 2014

Arguably, the only benefit dynamic languages offer is a form of polymorphism that arises from an
absence of a type for a function. For example the identity function fun(λ(x.x)), can be applied to numbers,
functions, functions of functions etc. This comes however, at the great cost of the runtime messiness of
class-checking. On the other hand in PCF, there is a distinct identity function for each type τ , namely
λ(x : τ)x, even though the behavior is same for each choice of τ . Polymorphic types allow one to write
a general pattern once and for all, and instantiate the pattern with a particular type when needed. While
polymorphism is motivated by this simple idea, of how to avoid writing redundant code, the concept adds a
lot of power to a language, thereby allowing one to define products, sums, integers and much more.

1 System F

Sort Abstract Form Concrete Form
Type τ ::= t t

arr(τ1; τ2) τ1 → τ2
all(t.τ) ∀(t.τ)

Exp e ::= x x
λ(x.e) λ(x : τ).e
ap(e1; e2) e1 (e2)
Lam(t.e) Λ(t) e
App[τ ](e) e[τ ]

1.1 Statics

Defining the statics first requires us to define a judgment for the well-formedness of types, given by
∆ ` τ type. These essentially capture scoping rules for type abstraction and are given by the following rules

∆, t type ` t type
(T1)

∆ ` τ1 type ∆ ` τ2 type

∆ ` τ1 → τ2 type
(T2)

∆, t type ` τ type

∆ ` ∀(t.τ) type
(T3)

1



The rules defining typing judgment carry two sets of hypothesis. The first one ∆, consists of judgments
regarding well-formedness of types and the second one Γ is the usual typing context for variables.

∆ Γ, x : τ ` x : τ
(T4)

∆ ` τ1 type ∆ Γ, x : τ1 ` e : τ2
∆ Γ ` λ(x : τ1) e : τ1 → τ2

(T5)

∆ Γ ` e1 : τ2 → τ ∆ Γ ` e2 : τ2
∆ Γ ` e1 e2 : τ

(T6)
∆, t type Γ ` e : τ

∆ Γ ` Λ(t) e : ∀(t.τ)
(T7)

∆ Γ ` e : ∀(t.τ ′) ∆ ` τ type

∆ Γ ` e[τ ] : [τ/t]τ ′ (T8)

1.2 Examples

The polymorphic identity function I is written as

Λ(t) λ(x : τ) e

it has the polymorphic type
∀(t.t→ t)

Instances of the identity function are written as I[τ ], where τ is some type, and have the type τ → τ .
The polymorphic composition function C is written as

Λ(t1) Λ(t2) Λ(t3) λ(f : t1 → t2) λ(g : t2 → t3) λ(x : t1) g(f(x))

Task What is the type of C? What is the type of C[τ ]?

1.3 Dynamics

The dynamics of System F are given as follows

λ(x : τ) e val
(D1)

Λ(t) e val
(D2)

e2 val
λ(x : τ1) e e2 7→ [e2/x]e

(D3)
e1 7→ e′

1

e1 e2 7→ e′
1 e2

(D4)

e1 val e2 7→ e′
2

e1 e2 7→ e1 e
′
2

(D5)
Λ(t) e[τ ] 7→ [τ/t]e

(D6)
e 7→ e′

e[τ ] 7→ e′[τ ]
(D7)

2 Polymorphic Church Numerals

Back in Gödel’s T the motivation behind numbers was a construct which would allow one to iterate up to
the number. So, intuitively, a natural number n is a function that takes an expression which is the base case,
a function which does one step of work and then applies the function n times to the base case. With this
intuition, we can define natural numbers in System F by the following translation.

2



nat , ∀(t.t ⇀ (t ⇀ t) ⇀ t)
z , Λ(t) λ(b : t) λ(s : t ⇀ t) b

s(e) , Λ(t) λ(b : t) λ(s : t ⇀ t) s(e[t] b s)
iter(e; e0;x.e1) , e[τ ] e0 λ(x : τ) e1

We can verify here that
iter(z; e0;x.e1) ≡ e0

iter(s(e); e0;x.e1) ≡ [iter(e; e0;x.e1)/x]e1

This is exactly what is dictated by the dynamics of nat in Gödel’s T.

3 Lists

The definition of lists of element of type ρ is not very different from the definition of natural numbers. In
fact, natural numbers can be seen as isomorphic to lists of unit. One implementation of lists in system F
is as follows.

list ρ , ∀(t.t ⇀ (ρ ⇀ t ⇀ t) ⇀ t)
nilρ , Λ(t) λ(n : t) λ(c : ρ ⇀ t ⇀ t) n

cons(h; tl)ρ , Λ(t) λ(n : t) λ(c : ρ ⇀ t ⇀ t) c h (tl[t] n c)
fold(e; e0;x.y.e1)ρ , e[τ ] e0 λ(x : ρ) λ(y : τ) e1

3


