
Recitation 4:
Products, Sums, and Pattern Matching

15-312: Principles of Programming Languages

Wednesday, February 5, 2014

In class we have been looking at how to add more power to our programming languages through function
definitions. In particular, the language PCF L(nat ⇀) allows us to define recursion and partial functions.
In today’s recitation and homework 2, we will look at how finite data types allow us to structure data.

1 Product Types

The binary product of two types τ1 × τ2 consists of ordered pair of values from each type. The eliminatory
forms for this type are the projections which select the first or the second component of the pair. One can
also consider the type of the nullary product unit which has no eliminatory form and contains no interesting
value.

Type τ ::= unit unit
prod(τ1; τ2) τ1 × τ2

Exp e ::= triv 〈〉
pair(e1; e2) 〈e1, e2〉
prl(e) e.l
prr(e) e.r

The statics for products is then defined as follows

Γ ` 〈〉 : unit
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ2 × τ2
Γ ` e : τ1 × τ2

Γ ` e.l : τ1

Γ ` e : τ1 × τ2
Γ ` e.r : τ2

It is possible to formulate the dynamics for product types either eagerly or lazily. We’ll go with eager in
this class.

〈〉 val
e1 val e2 val
〈e1, e2〉 val

e1 7→ e′
1

〈e1, e2〉 7→ 〈e′
1, e2〉

e1 val e2 7→ e′
2

〈e1, e2〉 7→ 〈e1, e′
2〉

e 7→ e′

e.l 7→ e′.l

e 7→ e′

e.r 7→ e′.r

Task Are we missing any rules here? Write those down

2 Sum Types

Most data structures involve alternatives such the distinction between a leaf and a interior node in a tree.
datatype declarations in ML usually involve a labelled sum of different types. A well-known mistake in
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programming language design is that of C-style pointers. A pointer is either NULL or a ‘address’ to a value.
The erasure of this distinction is the source of many a bug.

The simplest sum type, the binary sum is a choice between two types. The elimination form of a sum
type is a case analysis of a value.

Type τ ::= sum(τ1; τ2) τ1 + τ2
Exp e ::= inl[τ1; τ2](e) inl(e)

inr[τ1; τ2](e) inr(e)
case(e;x1.e1;x2.e2) case e {inl(x1)⇒ e1|inr(x2)⇒ e2}

For the sake of readability, we drop the type annotation from inl and inr, but we need the annotation to
retain the other type in the term. The statics of binary sums are defined as follows

Γ ` e : τ1
Γ ` inl(e) : τ1 + τ2

Γ ` e : τ2
Γ ` inr(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ
Γ ` case(e;x1.e1;x2.e2) : τ

As before, it is possible to define the lazy and eager dynamics for binary sums

e val
inl(e) val

e val
inr(e) val

e 7→ e′

inl(e) 7→ inl(e′)
e 7→ e′

inr(e) 7→ inr(e′)

e 7→ e′

case(e;x1.e1;x2.e2) 7→ case(e′;x1.e1;x2.e2)
e val

case(inl(e);x1.e1;x2.e2) 7→ [e/x1]e1

e val
case(inr(e);x1.e1;x2.e2) 7→ [e/x2]e2

It is possible to translate a number of types using sums and products. For example, booleans can be
defined as

bool , unit+ unit

Task Define true and false for this definition of bool.

3 Pattern Matching

Pattern matching is a natural and convenient generalization of the elimination forms of most finite datatypes.
So, instead of writing

let x = e in + x.r end

we, could alternatively write

case e of {(x,y) => x + y}
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For homework 2, we will implement most of the language of patterns as described in Chapter 13 of
PFPL. The language extends the PCF with sums and products with the following constructs.

Exp e ::= match[p1 . . . pn]( ~x1.e2; . . . ; ~xn.en) match e {p1 ⇒ e1| . . . |pn ⇒ en}
Pattern p ::= wild

x x
z z
s(p) s(p)
triv 〈〉
pair(p1; p2) 〈p1, p2〉
inl(p) inl(p)
inr(p) inr(p)

Here, each p⇒ e is called a rule and match takes a list of rules of the form {p1 ⇒ e1| . . . pn ⇒ en}

3.1 Statics

The statics of this language uses a few auxiliary judgements to typecheck patterns and rules. The first
judgement is written as

x1 : τ1, . . . , xn : τn  p : τ

This judgement is similar to the Γ ` e : τ judgement with the subtle difference that we cannot add
arbitrary variables to the context. So, each well-formed pattern of a certain type has a fixed Λ. Which
means that this judgement can be thought of as a function that takes p and τ as input and outputs a Λ. This
judgement is inductively defined as follows.

x : τ  x : τ ∅  : τ ∅  〈〉 : unit ∅  z : nat
Λ  p : nat

Λ  s(p) : nat

Λ  p : τ1
Λ  inl(p) : τ1 + τ2

Λ  p : τ2
Λ  inr(p) : τ1 + τ2

Λ1  p1 : τ1 Λ2  p2 : τ1 dom(Λ1) ∩ dom(Λ2) = ∅
Λ1 Λ2  〈p1, p2〉 : τ1 × τ2

The typing judgement for rules and sequences of rules can then be written as

p⇒ e : τ  τ ′

This judgement is read as “The rule p⇒ e transforms type τ to τ ′”.
This judgement is defined by the rules

Λ  p : τ Γ Λ ` e : τ ′

Γ ` p⇒ e : τ  τ ′
Γ ` p1 ⇒ e1 : τ  τ ′ . . . Γ ` pn ⇒ en : τ  τ ′

Γ ` p1 ⇒ e1 | . . . | pn ⇒ en : τ  τ ′

Finally, the typing rule for the match expression is as follows

Γ ` e : τ Γ ` rs : τ  τ ′

Γ ` match e {rs} : τ ′

Here, rs is a sequence of zero or more rules of the form p⇒ e.
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4 Takeaways

Takeaway 1 Every type has introduction and elimination forms. Introduction forms specify ways to create
terms of that type. On the other hand, elimination forms, specify ways to use terms of that type. In some
cases, introduction or elimination cases might be absent. For example, the nullary product unit has no
elimination form as there is no way to use 〈〉.

Takeaway 2 Every type has a canonical form which is the set of ‘final’ terms for that type. A term reaches
a canonical form when it has been fully evaluated.
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