
Recitation 2:
Abstract Syntax and De Bruijn Indices

15-312: Principles of Programming Languages

Wednesday, January 22, 2014

1 Abstract Syntax

Chapter 1 of PFPL has a rigorous treatment of abstract syntax in its most general form to support the
requirements of most programming languages. In this recitation we will look at simpler abstract syntax
trees and abstract binding trees similar to what we have asked you to implement in Assignment 1. We will
also look at an alternative representation for bound varibles called deBruijn indices

Abstract syntax/binding trees are tree representations of programs. As we have seen so far in the course,
such a tree representation allows us to do structural induction over programs, which in turn lets us prove
properties about our programming language.

1.1 AST

Given a set X of variables, a set O of operators and an arity function ar on operators, we can inductively
define abstract syntax trees in the following way

• If x ∈ X then x is an AST.

• If o ∈ O is an operator such that ar(o) = n, then if a1, ..., an are AST’s then o(a1, ..., an) is an AST.

The arity function returns a number for each operator which is the number of arguments it take. In particular,
if ar(o) = 0, then o() is an AST. In L(natstr), operators like plus have an arity of 2 and atomic operators
like strings and numbers have an arity of 0.

Note: In PFPL, the arity of an operator for an AST is defined as a tuple of ”sorts”. At this point in the
class, the languages we are looking at only have one sort, so the arity of an operator for an AST can be
adequately described by a single integer specifying the size of the tuple. Later on in the class, languages
with multiple sorts will be introduced and the concept itself will be better explained.

1.2 ABT

Abstract Binding Trees enrich AST’s with the means to introduce new variable parameters called bindings.
The arity of each operator needs to be generalized to consist of a finite sequence of numbers which we will
call valences. Valences indicate how many variables are introduced at a particular point. For example, if
we have an operator whose expressions look like, op(x.y.e1;x.e2) where two variables are bound to the
first argument and one variable is bound to its second argument, then ar(op) = (2, 1). We generalize the
definition of AST’s to ABT’s as follows.

1

Given a set X of variables, a set O of operators and an arity function ar on operators, we can inductively
define abstract binding trees in the following way

• If x ∈ X then x is an ABT.

• If o ∈ O is an operator such that ar(o) = (v1, ..., vn), then if for each 1 ≤ i ≤ n, xi is a sequence of
variables of length vi and ai is an ABT, then, o(~x1.a1, ..., ~xn.an) is an ABT.

1.3 Substitution

Now that we have a definition for ABT’s we can define substitution of an ABT b for a variable x in some
ABT a. This is denoted by [b/x]a. This is partially defined by the following conditions.

• [b/x]x = b

• [b/x]y = y if x 6= y

• [b/x]o(~x1.a1, ... ~xn.an) = o(~x1.[b/x]a1, ...,~[xn].[b/x]an) if ~xi /∈ b and x /∈ ~xi for all 1 ≤ i ≤ n.

In this definition ~xi /∈ b means that no variable in ~xi occurs free in b. The removal of these restrictions
would create additional unwanted binding of free variables. This unwanted binding is called capture. These
restrictions result in substitution being undefined for certain terms. However, if we are allowed to freely
rename bound variables, substitution is well-defined on an α-equivalence class of terms.

Task Let us see how substitution works in L(natstr). Write out the result of the substitution [b/x]a for
the following a and b. You are allowed to make α-conversions to avoid capture.

• a = let(y;x.x) and b = z ∗ 2

• a = let(5; y.x) and b = y + 5

• a = (x+ 3) and b = ”abc”

2 De Bruijn Indices

So far, we have discussed everything “up to alpha-renaming of bound variables”. Which is saying that we
rename bound variables at will. However, we need a single representation for a term while implementing
ABTs. One of the inconveniences of using a straightforward representation of ABTs is that α-equivalent
terms can have multiple representations, so implementing aequiv and other helper functions becomes
tricky. We will look at a more sophisticated representation, called locally nameless form, which avoids
this problem, so that each bound variable is represented by a single number, called a de Bruijn index. The
representation for a term then becomes a single data value.

Some of the nice features which de Bruijn indices offer are:.

• α-equivalence can be tested by structure traversal.

• No renaming required for bound variables.

• As bound variables are separate from free variables, capture is impossible

2

• It is stable under substitution. i.e. de Bruijn indices don’t change when you substitute one term in
another

The basic idea is to observe that variables in an abstract binding tree serve two roles. First, they can
appear free in a ABT – that is, they can be a name for a hypothesis in some hypothetical context. Second,
they can be a bound variable, in which case the variable occurences refer back to the location of the binding
abstraction. In the second case, the names

In a locally nameless representation, we distinguish these two roles in our data structure, in order to
make α-equivalence implementable as structural equality on terms. The trick in this representation is to
exploit a structural invariant of binding trees. First, binding trees are trees – they have no cycles in them.
Second, in any abstraction x.e, the only occurences of x are within e. As a result of these two facts, we
have a unique path from an abstractor to each occurence of the variable it binds. Furthermore, since we’re
only interested in the binder sites, we can compress this path to a single number, which tells us how many
binders we have to hop over before we reach the one we’re interested in.

Consider the following diagram of the fragment of a binding tree x.A(x, y.B(z.x, y, z, w.y)), in which
A and B are operator names.

We’ve put a box around every abstraction, and labelled each bound variable with its bound variable
number. We can calculate the bound variable number by looking at each path from an abstraction to its use
sites, and count the number of abstractions crossed along the way:

Path Variable #
x. → A→ x 0
x. → A→ y. → B → z. → x 2
y. → B → y 0
y. → B → w. → y 1

An important fact to notice about these paths is that even for the same binder, each occurrence of its
bound variable can have a different bound variable number, depending on the number of abstractions we
crossed over to reach that variable occurrence.

3

Task For the term let(z;x.z + let(x; y.x + y)), replace each bound variable with its de Bruijn index and
denote each binding site with the character −

4

