
Assignment 0:
Rule Induction

15-312: Principles of Programming Languages

Out: Tuesday, January 14th, 2014
Due: Tuesday, January 21st, 2014, 1:29PM

Welcome to 15-312! First things first. We will be using Piazza for all class communications. If you have
already received a welcome e-mail, there is nothing more you need to do. If not, please subscribe post-haste
at https://piazza.com/class#spring2014/15312.

Go to the course web page to understand the whiteboard policy for collaboration regarding the homework
assignments, the late policy regarding timeliness of homework submissions, and the use of Piazza.

Homework will typically consist of a theoretical section and an implementation section. For the first
assignment, there is only the theoretical section. You are required to typeset your answers; see the course
Web page for some guidance.

In this first assignment we are asking you to practice proving theorems by rule induction. You may find
this assignment difficult. Start early, and ask us for help if you get stuck! In particular, you are encouraged
to ask the TAs for help over Piazza, and/or come to office hours.

Submission

To submit your solutions place a file named assn0.pdf in your handin directory:

/afs/andrew.cmu.edu/course/15/312/handin/<yourandrewid>/assn0/

1 Course Mechanics

The purpose of this question is to ensure that you get familiar with this course’s collaboration policy.
As in any class, you are responsible for following our collaboration policy; violations will be handled

according to university policy.

Task 1.1 (4 pts). Our course’s collaboration policy is on the course’s Web site. Read it; then, for each of the
following situations, decide whether or not the students’ actions are permitted by the policy. Explain your
answers.

1. Dolores and Toby are discussing Problem 3 by IM. Meanwhile, Toby is writing up his solution to that
problem.

2. Amy, Jeff, and Chris split a pizza while talking about their homework, and by the end of lunch, their
pizza box is covered with notes and solutions. Chris throws out the pizza box and the three go to
class.
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3. Ian and Jeremy write out a solution to Problem 4 on a whiteboard in Newell-Simon Hall. Then,
they erase the whiteboard and run to the atrium. Sitting at separate tables, each student types up the
solution on their laptop.

4. Nitin and Margaret are working on this homework over lunch; they write out a solution to Problem 2
on a napkin. After lunch, Margaret pockets the napkin, heads home, and writes up her solution.

2 Shuffling cards

For this assignment, we will play with cards. Rather than the standard 52 different cards, we will define four
different cards, one for each suit. We model a stack of cards as a list (don’t confuse a stack of cards with the
data structure of stacks).

♥ card
(1) ♠ card

(2) ♣ card
(3) ♦ card

(4)

nil stack
(5)

c card s stack
cons(c, s) stack

(6)

These rules are an iterated inductive definition for a stack of cards; these rules lead to the following
induction principle:

In order to show P(s) whenever s stack, it is enough to show

1. P(nil)

2. P(cons(c, s)) assuming c card and P(s)

We also want to define an judgment unshuffle. Shuffling takes two stacks of cards and creates a new
stack of cards by interleaving the two stacks in some way; un-shuffling is just the opposite operation.

The definition of unshuffle(s1, s2, s3) defines a relation between three stacks of cards s1, s2, and s3,
where s2 and s3 are arbitrary “unshufflings” of the first stack – sub-stacks where the order from the original
stack is preserved, so that the two sub-stacks s2 and s3 could potentially be shuffled back to produce the
original stack s1.

unshuffle(nil, nil, nil)
(7)

c card unshuffle(s1, s2, s3)

unshuffle(cons(c, s1), s2, cons(c, s3))
(8)

c card unshuffle(s1, s2, s3)

unshuffle(cons(c, s1), cons(c, s2), s3)
(9)

Task 2.1 (10 pts). Prove the following (by giving a derivation). There are at least two ways to do so.

unshuffle(cons(♥, cons(♠, cons(♠, cons(♦, nil)))), cons(♠, cons(♦, nil)), cons(♥, cons(♠, nil)))
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Task 2.2 (5 pts). What was the other way? (describe briefly, or just give the other derivation)

Task 2.3 (15 pts). Prove that unshuffle has mode (∀,∃,∃). That is, prove the following:

For all s1, if s1 stack, then there exists s2 and s3 such that unshuffle(s1, s2, s3).

Note that there are a number of different ways of proving this! What the s2 and s3 “look like” may be
very different depending on how you write the proof. Restate any induction principle you use, and identify
what property P you are proving with that induction principle.

Task 2.4 (15 pts). Give an inductive definition (a set of inference rules) of separate, a judgment similar to
unshuffle that relates a stack of cards to two “un-shuffled” sub stacks where all of the red cards (suits ♦ and
♥) are in one stack and all the black cards (suits♣ and♠) are in the other. The following should be provable
from your inductive definition:

separate(cons(♥, cons(♦, cons(♠, nil))), cons(♥, cons(♦, nil)), cons(♠, nil))
separate(cons(♠, cons(♦, cons(♣, cons(♥, nil)))), cons(♦, cons(♥, nil)), cons(♠, cons(♣, nil)))
separate(cons(♣, cons(♥, cons(♣, cons(♠, nil)))), cons(♥, nil), cons(♣, cons(♣, cons(♠, nil))))

However separate(cons(♥, cons(♠, nil)), cons(♥, cons(♠, nil)), nil) should not be provable from your
definition, because the stack in the second position has both a red and a black card.

Similarly, separate(cons(♥, cons(♦, nil)), cons(♦, cons(♥, nil)), nil) should not be provable from your
definitions, because ordering is not preserved.

Task 2.5 (5 pts). Hopefully, your definition of separate will have not just the mode (∀,∃,∃), but the stronger
mode (∀, ∃!, ∃!). What does this mode mean? Why does unshuffle not have this mode?

3 Cutting cards

For this part of the assignment we will define, using simultaneous inductive definition, stacks of cards with
even or odd numbers of cards in them.

nil even
(10)

c card s odd
cons(c, s) even

(11) c card s even
cons(c, s) odd

(12)

This inductive definition is simultaneous (because it simultaneously defines even and odd) as well as
iterated (because it relies on the previously-defined definition of card).

Task 3.1 (6 pts). What is the induction principle for these judgments? You may want to examine the
induction principle for even and odd natural numbers from PFPL.

Task 3.2 (15 pts). Prove well-formedness for the even judgment. That is, prove “For all s, if s even then
s stack.”

You should use the induction principle from the previous task. Again, be sure to identify what property
or properties you are proving with that induction principle.

Task 3.3 (10 pts). Prove the following theorem:
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For all S, if

1. S(nil).

2. For all c1, c2, and s, if c1 card, c2 card, and S(s), then S(cons(c1, cons(c2, s))).

then for all s, if s even then S(s).

You will want to use the induction principle mentioned above in order to prove this; as always, remember
to carefully consider and state the induction hypothesis you are using.

Note: this is a difficult proof, because the induction hypothesis is not immediately obvious. Here’s a
hint: because you are dealing with a simultaneous inductive definition, the induction hypothesis will have
two parts. In our solution, the induction hypothesis pertaining to even-sized stacks is “S(s),” and the one
pertaining to odd-size stacks is “For all c′, if c′ card then S(cons(c′, s)).”

Proving this statement justifies a new induction principle, a derived induction principle:

To show that S(s) whenever s even, it is enough to show

• S(nil)

• S(cons(c1, cons(c2, s))), assuming c1 card, c2 card, and S(s)

Task 3.4 (15 pts). Another “operation” on cards is cutting, where a player separates a single stack of cards
into two stacks of cards by removing some number of cards from the top of the stack. We can define cutting
cards using an inductive definition.

s stack
cut(s, s, nil)

(13)
c card cut(s1, s2, s3)

cut(cons(c, s1), s2, cons(c, s3))
(14)

Using the derived induction principle from the previous task (you can use the induction principle from the
previous task even if you do not do the previous task!), prove the following:

For all s1, s2, s3, if s2 even, s3 even, and cut(s1, s2, s3), then s1 even.

You are allowed to assume the following lemmas:

• Inversion for nil: For all s1 and s2, if cut(s1, s2, nil), then s1 = s2 and s1 stack.

• Inversion for cons: For all s1, s2, and s3, if cut(s1, s2, cons(c, s3)), then there exists a s′1 such that
s1 = cons(c, s′1), c card, and cut(s′1, s2, s3).
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