15-122: Principles of Imperative Computation

Recitation 4: A queue_t Interface Nivedita, Andrew, Aaron

A Wild struct Appears

Suppose we have the following definitions:

1 struct X { foo |a
2 int a;

3 struct Yx b; b
4}

5

6 struct Y { bar |c
7 intx c;

8 int d; d
9 struct Xx e;

10 }; e
11

12 struct Xx foo
13 struct Yx bar

alloc(struct X);
alloc(struct Y);

14
15 foo—>b = bar;
16 bar—>e = foo;
17

18 bar—>e—>a = 15;

19 foo—>b—>c = alloc(int);

20 *(bar—>c) = foo—>a *x 8 + 2;

21 foo—>b—>d = 1000 *x foo—>a + *(foo—>b—>c);

Checkpoint 0

Fill out the table above. What's the value of bar->d? (For your own sanity, draw a picture!)

Stack and Queue Interfaces
In lecture we discussed four functions exposed by the stack interface:

e stack new: Creates and returns a new stack
e stack empty: Given a stack, returns true if it is empty, else false
e push: Given a stack and a string, puts the string on the top of the stack

e pop: Given a stack, removes and returns the string on the top of the stack
Similarly, we discussed four functions exposed by the queue interface:

e queue new: Creates and returns a new queue
e queue empty: Given a queue, returns true if it is empty, else false
e enq: Given a queue and a string, puts the string at the end of the queue

e deq: Given a queue, removes and returns the string at the beginning of the queue
q q g g g q

Checkpoint 1
Write a function to reverse a queue using only functions from the stack and queue interfaces.

1 void reverse(queue_t Q) {

2

3 // Hint : Allocate a
4 // temporary data structure
5 while() {

6

7

8

9

10 }

11 while() {

12

13

14

15

16 }

17 }

Checkpoint 2

Write a recursive function to count the size of a stack. You may not destroy the stack in the process -
the stack’s elements (and order) must be the same before and after calling this function.

1 int size(stack_t S) {

© 0 N o o b~ N

_ =
= O

—
w N

14 }

Checkpoint 3

Why couldn’t this stack size implementation be used in contracts in CO? Hint: Contracts in CO cannot
have side effects.

