15-122: Principles of Imperative Computation
Recitation 1: A Bit About Bytes Nivedita Chopra, Aaron Gutierrez

Converting between binary and decimal

To easily convert a number represented in binary notation, such as 10100j3, we can employ Horner's
algorithm. At each step, we multiply the previous result by 2, and add the next bit in the number. To
convert in the other direction, we divide by 2 and write the remainder at each step from bottom to top.
We can see the conversion between 10100j5 and 20 (or 20y to be extra-decimaly) below.

X 2+ = X 24 = x 2+ =
X 2+ = x 2+ = x 2+ =
x24_1 =_1 X 2+ = X 2+ =
1 x2+_0 =_2 x 2+ = X 24 =
2 x2+4+_1 =_5 x 2+ = x 2+ =
5 x2+ 0 = 10 X 2+ = X 2+ —
10 x24_0 =_20 X 2+ = X 2+ =

Checkpoint 0
What is the decimal representation of 11110107

What is the binary representation of 49(;¢;?

Hexadecimal notation

Hex is useful because every hex digit corresponds to exactly 4 binary digits (bits). Base 8 (octal) is
similarly useful: each octal digit corresponds to exactly 3 binary digits. However, hex more evenly divides
up a 32-bit integer. In CO we indicate we are using base 16 with an 0x prefix, so 7f2c[1¢] is 0x7£2c.

Hex O |1 |2 [3 |4 |5 |6 |7 [8 |9 Ja |b Jc [d |e |[f

Bin. [0000 | 0001 | 0010 [0011 | 0100 | 0101 | 0110 | 0111 [1000 | 1001 | 1010 | 1011 | 1100 [1101 [1110 | 1111

Dec. [O |1 |2 |3 |4 |5 |6 |7 [8 [9 [10 [11 [12 [13 [14 |15
Convert the binary number 1011111010101101) to hex.

Convert the 0x20 to decimal.

Why wouldn’t it make sense to write a CO function that converts hex numbers to decimal numbers?

Bit manipulation

and or xor (exclusive or) complement

ef1jo _t]ijo 1] o ~ 1] 0

1[[1]o0 1 1[0 1 o] 1
0|0 010 0 1 0

There are also shift operators. They take a number and shift it left (or right) by the specified number of
bits. In CO, right shifts sign extend. This means that if the first digit was a 1, then 1s will be copied in
as we shift.

1101 1111 0101 0010; >> 8 = 1111 1111 1101 1111

ARGB representation of color

We usually use 32-bit integers in CO to represent a single integer. However, it's possible to use the bits in
other ways: as 32 separate Boolean values or as 4 separate 8-bit numbers in the range [0,255). This lets
us represent a color (red, green, and blue intensities, plus transparency or “alpha”), as 32-bit CO integer.

Sample Length: d g g g
Channel Membership: Alpha Red Green Blue

Bit Number: 31 30|29 23 27 26 25 24 23 2221 2019 1817161514 131211 10/9 ' & 7 6 S5 4 /3 2 1 0

Two’s complement

Because CO's int type only represents integers in the range [—23!, 231), addition and multiplication are
defined in terms of modular arithmetic. As a result, adding two positive numbers may give you a negative
number!

Checkpoint 1

Write a function that returns 1 if the sign bit is 1, and 0 otherwise. That is, write a function that returns
the sign bit shifted to be the least significant bit. Your solution can use any of the bitwise operators, but
will not need all of them.

1 int getSignBit(int x)

2 //@ensures |\result == || \result ==

3 A

4 return ;
5 }

Checkpoint 2

What assertion would you need to write to ensure that an addition would give a result without overflowing
(in other words, to ensure that the result you get in CO is the same as the result you get with true integer
arithmetic).

1 int safe_add(int a, int b)
2 /x@requires

3

4

5

6

7 @*/

8 { return a + b; }

What about multiplication? For the sake of simplicity, you can assume both numbers are non-negative.

1 int safe_mult(int a, int b)

2 /*@requires a >= 0 && b >= 0 &&
3

4

5

6

7 @*/

8 { return a * b; }

