Lecture 8 Notes
Data Structures

15-122: Principles of Imperative Computation (Spring 2016)
Frank Pfenning, André Platzer, Rob Simmons

1 Introduction

In this lecture we introduce the idea of imperative data structures. So far, the
only interfaces we’ve used carefully are pixels and string bundles. Both of
these interfaces had the property that, once we created a pixel or a string
bundle, we weren’t interested in changing its contents. In this lecture, we’ll
talk about an interface that mimics the arrays that are primitively available
in CO.

To implement this interface, we'll need to round out our discussion of
types in CO by discussing pointers and structs, two great tastes that go great
together. We will discuss using contracts to ensure that pointer accesses are
safe.

Relating this to our learning goals, we have

Computational Thinking: We illustrate the power of abstraction by con-
sidering both the client-side and library-side of the interface to a data
structure.

Algorithms and Data Structures: The abstract arrays will be one of our
first examples of abstract datatypes.

Programming: Introduction of structs and pointers, use and design of in-
terfaces.

2 Structs

So far in this course, we've worked with five different CO types — int,
bool, char, string, and arrays ¢[] (there is a array type ¢t[] for every type
t). The character, Boolean and integer values that we manipulate, store

LECTURE NOTES

Data Structures L8.2

locally, and pass to functions are just the values themselves. For arrays (and
strings), the things we store in assignable variables or pass to functions are
addresses, references to the place where the data stored in the array can be
accessed. An array allows us to store and access some number of values of
the same type (which we reference as A[0], A[1], and so on).

Therefore, when entering the following commands in Coin (the outputs
have been elided),

--> char c = '\n’;
--> int 1 = 4;
--> string[] A = alloc_array(string, 4);

--> A[0] = "hi";
--> A[1] = "je";
--> A[2] = "ty";
--> A[3] = "lo";

the interpreter will store something like the following in its memory:

charc | \n’ 0 1 2 3 4

inti |2 | “hi ty” | “lo

string[] A

llj en

The next data structure we will consider is the struct. A struct can be
used to aggregate together different types of data, which helps us create
data structures. By contrast, an array is an aggregate of elements of the
same type.

Structs must be explicitly declared in order to define their “shape”. For
example, if we think of an image, we want to store an array of pixels along-
side the width and height of the image, and a struct allows us to do that:

typedef int pixel;

struct img_header {
pixel[] data;
int width;
int height;

b

Here data, width, and height are fields of the struct. The declaration
expresses that every image has an array of data as well as a width and a

LECTURE NOTES

Data Structures L8.3

height. This description is incomplete, as there are some missing consis-
tency checks — we would expect the length of data to be equal to the width
times the height, for instance, but we can capture such properties in a sep-
arate data structure invariant.

C0 values such as integers, characters, the address of an array are small.
Depending on the computer, an address is either 64 bits long or 32 bits
long, which means that the small types take at most 64 bits to represent.
Because structs can have multiple components, they can grow too large for
the computer to easily copy around, and CO does not allow us to use structs
as locals:

% coln structs.cO

--> struct img_header IMG;

<stdio>:1.1-1.22:error:type struct img_header not small

[Hint: cannot pass or store structs in variables directly; use
pointers]

Therefore, we can only create structs in allocated memory, just like we
can only store the contents of arrays in allocated memory. (This is true
even if they happen to be small enough to fit into 32 bytes.) Instead of
alloc_array we call alloc which returns a pointer to the struct that has
been allocated in memory. Let’s look at an example in coin.

--> struct img_headerx IMG = alloc(struct img_header);
IMG is OxFFAFFF20 (struct img_headerx)

We can access the fields of a struct, for reading or writing, through the
notation p->f where p is a pointer to a struct, and f is the name of a field
in that struct. Continuing above, let’s see what the default values are in the
allocated memory.

--> IMG->data;

(default empty int[] with 0 elements)
--> IMG->width;

0 (int)

--> IMG->height;

0 (int)

LECTURE NOTES

Data Structures L8.4

We can write to the fields of a struct by using the arrow notation on the
left-hand side of an assignment.

--> IMG->data = alloc_array(pixel, 2);
IMG->data is OxFFAFC130 (int[] with 2 elements)
--> IMG->width = 1;

IMG->width is 1 (int)

--> (*IMG) .height = 2;

(*(IMG)).height is 2 (int)

--> IMG->data[0] = OxFFOOFFOO;

IMG->data[0] is -16711936 (int)

--> IMG->data[l] = OxFFFF0000;

IMG->data[l] is -65536 (int)

The notation (*p).f is a longer form of p->f. First, *p follows the
pointer to arrive at the struct in memory, then . f selects the field f. We will
rarely use this dot-notation (*p).f in this course, preferring the arrow-
notation p->f.

An updated picture of memory, taking into account the initialization
above, looks like this:

0 1 2 3 4

charc | \n’
int I 4 ; llhIII "]e" llty" "Ioﬂ
. data width height
string[] A
structimg_header* IMG ._—H ! ‘ L ’ 2 ‘

0 1 2
OXFFOOFFOO | OXFFFF0000

LECTURE NOTES

Data Structures L8.5

3 Pointers

As we have seen in the previous section, a pointer is needed to refer to a
struct that has been allocated on the heap. In can also be used more gener-
ally to refer to an element of arbitrary type that has been allocated on the
heap. For example:

--> intx ptrl = alloc(int);
ptrl is OxFFAFC120 (intx)
--> xptrl = 16;

*(ptrl) is 16 (int)

--> *ptrl;

16 (int)

In this case, we refer to the value of p using the notation *p, either to read
(when we use it inside an expression) or to write (if we use it on the left-
hand side of an assignment).

So we would be tempted to say that a pointer value is simply an ad-
dress. But this story, which was correct for arrays, is not quite correct for
pointers. There is also a special value NULL. Its main feature is that NULL is
not a valid address, so we cannot dereference it to obtain stored data. For
example:

--> int*x ptr2 = NULL;

ptr2 is NULL (intx)

--> *ptr2;

Error: null pointer was accessed
Last position: <stdio>:1.1-1.3

Graphically, NULL is sometimes represented with the ground symbol, so we
can represent our updated setting like this:

charc | \n’ 0 L 2 3 4

inti | 4) “hi ty” | “lo

string[] A data width height

structimg_header* IMG H ! ‘ 1 ‘ 2 ‘
int* ptrl .——ﬁ 16 ‘

int*ptr2 | e—i 0 1 2
OXFFOOFFOO | OXFFFF0000

«“ j e”

To rephrase, we say that a pointer value is an address, of which there
are two kinds. A valid address is one that has been allocated explicitly with

LECTURE NOTES

Data Structures L8.6

alloc, while NULL is an invalid address. In C, there are opportunities to
create many other invalid addresses, as we will discuss in another lecture.

Attempting to dereference the null pointer is a safety violation in the
same class as trying to access an array with an out-of-bounds index. In CO,
you will reliably get an error message, but in C the result is undefined and
will not necessarily lead to an error. Therefore:

Whenever you dereference a pointer p, either as *p or p->f, you must
have a reason to know that p cannot be NULL.

In many cases this may require function preconditions or loop invariants,
just as for array accesses.

4 Creating an interface

The next ten lectures for this class will focus on building, analyzing, and
using different data structures. When we're thinking about implementing
data structures, we will almost always use pointers to structs as the core of
our implementation.

We’ve also seen two kinds of interfaces in our programming assign-
ment: the pixels interface in the early programming assignments, and the
string bundle interface in the DosLingos programming assignment. For
this lecture, we will work through an intellectual exercise: what if C0O did
not provide arrays (we’ll limit ourselves to arrays of strings) as a primitive
type in C0? If we wanted to use something like strings, we’d have to intro-
duce them from scratch as an abstract type, like pixels or string bundles.

For this exercise, we’ll build an abstract data type that functions like an
array of strings; in fact, we will see our implementation will end up doing
a bit more than C0. The primitive operations that CO provides on string
arrays are the ability to create a new array, to get a particular index of an
array, and to set a particular index in an array. We could capture these as
three functions that act on an abstract type arr_t:

typedef _______ arr_t;

arr_t arr_new(int size); // alloc_array(string, size)
string arr_get(arr_t A, int i); // A[i]

void arr_set(arr_t A, int i, string x); // A[i] = x

But this is not a complete picture! An interface needs to also capture the
preconditions necessary for using that abstract type safely. For instance, we
know that safety of array access requires that we only create non-negative-
length arrays and we never try to access a negative element of an array:

LECTURE NOTES

Data Structures L8.7

arr_t arr_new(int size) /x@requires size >= 0 @x/ ;
string arr_get(arr_t A, int i) /+@requires 0 <= i; @x/ ;

This still isn’t enough: our contracts need to ensure an upper bound so that
we don’t access the element at index 100 of a length-12 array. We don’t
have the \length() method, as it is a primitive for C0 arrays, not our new
arr_t type. So we need an additional function in our interface to get the
length, and we’ll use that in our contracts.

int arr_len(arr_t A);
string arr_get(arr_t A, int i)
/*@requires 0 <= i && 1 < arr_len(A); @/ ;

It's important to emphasize what just happened. Because we want the type
arr_t to be abstract, we can’t use \length in a contract: we can only use
\length for arrays. Because we have to be able to write a contract that
explains how to use the data type safely, we need to extend our interface
with a new function arr_1len. But because this function is in the interface,
the client can access the length of the array — something that can’t be done,
for CO arrays, outside of a contract! So we do know something about arr_t
now: it can’t just be string[], because if it was there would be no way to
implement arr_len.

For this reason, we're going to say that arr_t is not an unknown type
but that it is an unknown pointer type. The commented typedef below
shows how we indicate this:

// typedef ______ * arr_t;

int arr_len(arr_t A)
/*@requires A !'= NULL; @x/;

arr_t arr_new(int size)
/*@requires 0 <= size; @x/
/*@ensures \result !'= NULL; @x/
/*@ensures arr_len(\result) == size; @x/;

LECTURE NOTES

11

12

13

14

15

16

17

10

11

12

13

14

15

16

17

18

Data Structures L8.8

string arr_get(arr_t A, int i)
/*@requires A !'= NULL; @x/
/*@requires 0 <= i && i < arr_len(A); @*/;

void arr_set(arr_t A, int i, string x)
/*@requires A '= NULL; @/
/*@requires 0 <= i && i < arr_len(A); @*/;

Admitting that arr_t is a pointer also means that we have to add a lot of
NULL checks to the interface — as the client of the arr_t type, we know that
arr_t is either a valid pointer to the array data structure, or else it is NULL.

5 The Library Perspective

When we implement the library for arr_t, we will declare a type arr to
be a pointer to a struct arr_header, which has a limit field to hold the
length and a data field to hold the actual array.

typedef struct arr_header arr;
struct arr_header {

int limit;

string[] data;
b

Inside the library implementation, we’ll use arrx instead of arr_t to em-
phasize that we're manipulating a pointer structure. Outside, we use exclu-
sively arr_t as our abstract type of supped up arrays. Using this knowl-
edge, we can begin to implement the array interface from the library side,
though we immediately run into safety issues.

int arr_len(arrx A)
//@requires A '= NULL;
{

return A->limit;

}

string arr_get(arrx A, int i)
//@requires A '= NULL;
//@requires 0 <= i && i < arr_len(A);

{

return A->data[il];

}

LECTURE NOTES

Data Structures L8.9

Inboth cases, the A != NULL precondition allows us to say that the A->T1imit
and A->data dereferences are safe. But how do we know A->data[i] is
not an out-of-bounds array access? We don’t — the second precondition of
arr_get just tells us that i is nonnegative and less than whatever arr_1len
returns!

If we want to use the knowledge that arr_len(A) returns the length
of A->data, then we’d need to add \result == \length(A->data) as a
postcondition of arr_1len...

...and we can only prove that postcondition true if we add the precon-
dition A->1imit == \length(A->data) toarr_len...

...and if we do that, it changes the safety requirements for the call to
arr_len in the preconditions of arr_get, so we also have to add the pre-
condition A->1imit == \length(A->data) to arr_get.

The user, remember, didn’t need to know anything about this, because
they were ignorant of the internal implementation details of the arr_t
type. As long as the user respects the interface, only creating arr_ts with
arr_new and only manipulating them witharr_len,arr_get,and arr_set,
they should be able to expect that the contracts on the interface are suffi-
cient to ensure safety. But we don’t have this luxury from the library per-
spective: all the functions in the library’s implementation are going to de-
pend on all the parts of the data structure making sense with respect to all
the other parts. We’ll capture this notion in a new kind of invariant, a data
structure invariant.

6 Data Structure Invariants

We can apply operational reasoning as library designers to say that, as long
as the limit field of an arr is set correctly by arr_new, it must remain cor-
rect throughout all calls to arr_get and arr_set. But, as with operational
reasoning about loops, this is an error-prone way of thinking about our
data structures. Our solution in this case will be to capture what we know
about the well-formedness of an array in an invariant; we expect that any
arr being handled by the user will satisfy this data structure invariant.

The invariants of arrays are pretty simple: a arr is well-formed if it is a
non-NULL pointer to a struct where \length(AH->data) == AH->limit. If
we try to turn this into a mathematical statement, we get is_arr:

LECTURE NOTES

9

10

11

12

13

Data Structures L8.10

bool is_arr(struct arr_headerx AH) {
return AH != NULL
&& is_arr_expected_length(AH->data, AH->limit);
}

While we would like is_arr_expected_length to be a function that re-
turns true when the given array has the expected length and false oth-
erwise, the restriction of length-checking to contracts makes this impossi-
ble to write in CO. In this one case, we’ll allow ourselves to write a data
structure invariant that might raise an assertion error instead of returning
false:

bool is_arr_expected_length(string[] A, int length) {
//@assert \length(A) == length;
return true;

}

Whenever possible, however, we prefer data structure invariants that re-
turn true or false to data structures that raise assertion failures.

The data structure invariant, then, implies the postcondition of arr_1len,
and so the function arr_get will require the data structure invariant to
hold as well, satisfying the precondition of arr_len.

int arr_len(arrx A)
//@requires is_arr(A);
//@ensures \result == \length(A->data);
{
return A->limit;

}

string arr_get(arrx A, int i)
//@requires is_arr(A);
//@requires 0 <= i && i < arr_len(A);
{

return A->data[i];

}

LECTURE NOTES

10

11

12

13

14

15

16

17

18

Data Structures L8.11

Functions that create new instances of the data structure should ensure
that the data structure invariants hold of their results, and functions that
modify data structures should have postconditions to ensure that none of
those data structure invariants have been violated.

arrx arr_new(int size)
//@requires 0 <= size;
//@ensures is_arr(\result);
{
struct arr_headerx AH = alloc(struct arr_header);
AH->1imit = size;
AH->data = alloc_array(string, size);
return AH;

}

void arr_set(arrx A, int i, string x)
//@requires is_arr(A);
//@requires 0 <= i & i < arr_len(A);
//@ensures is_arr(A);
//@ensures string_equal(arr_get(A, 1), X);
{

A->datali] = x;

}

Now that we have added data structure invariants, our operational reason-
ing about what it means for why arr_get was safe can be formalized as
an invariant. Any client that respects the interface will only ever get and
will only ever manipulate arrays that satisfy the data structure invariants,
so we know that the data structure invariants we’re counting on for safety
will hold at runtime.

7 Invariants Aren’t Usually Part of the Interface

When we have interfaces that hide implementations from the user, then the
data structure invariant should not be a part of the interface. Clients don’t
need to know that the internal invariants are satisfied; as long as they’re
using arr according to the interface, their invariants should be satisfied.

LECTURE NOTES

	Introduction
	Structs
	Pointers
	Creating an interface
	The Library Perspective
	Data Structure Invariants
	Invariants Aren't Usually Part of the Interface

