Lecture 4 Notes
Searching Arrays

15-122: Principles of Imperative Computation (Spring 2016)
Frank Pfenning

1 Introduction

One of the fundamental and recurring problems in computer science is to
find elements in collections, such as elements in sets. An important algo-
rithm for this problem is binary search. We use binary search for an integer
in a sorted array to exemplify it. As a preliminary study in this lecture we
analyze linear search, which is simpler, but not nearly as efficient. Still it is
often used when the requirements for binary search are not satisfied, for
example, when we do not have the elements we have to search arranged in
a sorted array.
In term of our learning goals, we address the following:

Computational Thinking: Developing contracts (i.e., preconditions, post-
conditions, assertions, and loop invariants) that establish the safety
and correctness of imperative programs.

Evaluating the use of order (sorted data) as a problem-solving tool.

Identifying the difference between specification and implementation.
Algorithms and Data Structures: Describing linear search.

Programming: We will practice deliberate programming together in lectures.

Identifying, describing, and effectively using short-circuiting Boolean
operators.

2 Linear Search in an Unsorted Array

If we are given an array of integers A without any further information and
have to decide if an element z is in A, we just have to search through it,

LECTURE NOTES

Searching Arrays L4.2

element by element. We return true as soon as we find an element that
equals z, false if no such element can be found.

bool is_in(int x, int[] A, int lo, int hi)
//@requires 0 <= 1o && lo <= hi && hi <= \length(A);
{
for (int i = lo; i < hi; i++)
//@loop—_invariant lo <= i && i <= hi;

{
if (A[i] == x) return true;
}
return false;

}

We used the statement i++ which is equivalent to i = i+1 to step through
the array, element by element.

The precondition is very common when working with arrays. We pass
an array, and we also pass bounds — typically we will let lo be 0 and hi be
the length of the array. The added flexibility of allowing lo and hi to take
other values will be useful if we want to limit search to the first n elements
of an array and do not care about the others. It will also be useful later
to express invariants such as x is not among the first k elements of A, which
we will write in code as 'is_in(x, A, 0, k) and which we will write in
mathematical notation as x ¢ A[0, k).

The loop invariant is also typical for loops over an array. We examine
every element (i ranges from lo to hi — 1). But we will have ¢ = hi after
the last iteration, so the loop invariant which is checked just before the exit
condition must allow for this case.

Could we strengthen the loop invariant, or write a post-condition? We
could try something like

//@loop—_invariant 'is_in(x, A, lo, i);

where !b is the negation of b. However, it is difficult to make sense of this
use of recursion in a contract or loop invariant so we will avoid it.

This is small illustration of the general observation that some functions
are basic specifications and are themselves not subject to further specifica-
tion. Because such basic specifications are generally very inefficient, they
are mostly used in other specifications (that is, pre- or post-conditions, loop
invariants, general assertions) rather than in code intended to be executed.

LECTURE NOTES

® N o Ul e W N e

Searching Arrays L4.3

3 Sorted Arrays

A number of algorithms on arrays would like to assume that they are sorted.
Such algorithms would return a correct result only if they are actually run-
ning on a sorted array. Thus, the first thing we need to figure out is how
to specify sortedness in function specifications. The specification function
is_sorted(A,lo,hi) traverses the array A from left to right, starting at lo
and stopping just before reaching hi, checking that each element is smaller
or equal to its right neighbor. We need to be careful about the loop invari-
ant to guarantee that there will be no attempt to access a memory element
out of bounds.

bool is_sorted(int[] A, int lo, int hi)
//@requires 0 <= 1o && lo <= hi && hi <= \length(A);
{
for (int i = lo; i < hi-1; i++)
//@loop_invariant lo <= i;
if (! (A[i] <= A[i+1])) return false;
return true;

}

The loop invariant here does not have an upper bound on i. Fortunately,
when we are inside the loop, we know the loop condition is true so we
know i < hi — 1. That together with lo < i guarantees that both accesses are
in bounds.

We could also try ¢ < hi — 1 as a loop invariant, but this turns out to
be false. It is instructive to think about why. If you cannot think of a good
reason, try to prove it carefully. Your proof should fail somewhere.

Actually, the attempted proof already fails at the initial step. If lo =
hi = 0 (which is permitted by the precondition) then it is not true that 0 =
lo=i<hi—1=0-1= —1. We could say 7 < hi, but that wouldn’t seem
to serve any particular purpose here since the array accesses are already
safe.

Let’s reason through that. Why is the access A[i] safe? By the loop
invariant lo < 7 and the precondition 0 < lo we have 0 < 4, which is the
tirst part of safety. Secondly, we have i < hi—1 (by the loop condition, since
we are in the body of the loop) and hi < length(A) (by the precondition), so
1 will be in bounds. In fact, even ¢ + 1 will be in bounds, since 0 < lo <1 <
i+1 (since i is bounded from above) and i+1 < (hi—1)+1 = hi < length(A).

Whenever you see an array access, you must have a very good reason
why the access must be in bounds. You should develop a coding instinct

LECTURE NOTES

10

11

12

Searching Arrays L4.4

where you deliberately pause every time you access an array in your code
and verify that it should be safe according to your knowledge at that point
in the program. This knowledge can be embedded in preconditions, loop
invariants, or assertions that you have verified.

4 Linear Search in a Sorted Array

Next, we want to search for an element z in an array A which we know is
sorted in ascending order. We want to return —1 if x is not in the array and
the index of the element if it is.

The pre- and post-condition as well as a first version of the function
itself are relatively easy to write.

int search(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,0,n);
/*@ensures (\result == -1 && 'is_in(x, A, 0, n))
|| ((0 <= \result && \result < n) && A[\result] == x);
@x/
{
for (int i = 0; i < n; i++)
//@loop_invariant 0 <= i & i <= n;
if (A[i] == Xx) return i;
return -1;

}

This does not exploit that the array is sorted. We would like to exit the
loop and return —1 as soon as we find that A[i| > z. If we haven’t found z
already, we will not find it subsequently since all elements to the right of i
will be greater or equal to A[i] and therefore strictly greater than x. But we
have to be careful: the following program has a bug.

LECTURE NOTES

Searching Arrays L4.5

1 int search(int x, int[] A, int n)

2 //@requires 0 <= n && n <= \length(A);

3 //@requires is_sorted(A,0,n);

1+ /x@ensures (-1 == \result && !'is_in(x, A, 0, n))

5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/

7 {

s for (int 1 = 0; A[i] <= x & 1 < n; i++)

9 //@loop_invariant 0 <= i && i <= n;

10 if (A[i] == Xx) return i;

n return -1;

12 }

Can you spot the problem? If you cannot spot it immediately, reason
through the loop invariant. Read on if you are confident in your answer.

LECTURE NOTES

Searching Arrays L4.6

The problem is that the loop invariant only guarantees that 0 < i < n
before the exit condition is tested. So it is possible that i = n and the test
A[i] <= xwill try to access an array element out of bounds: the n elements
of A are numbered from Oton — 1.

We can solve this problem by taking advantage of the so-called short-
circuiting evaluation of the boolean operators of conjunction (“and”) && and
disjunction (“or”) | |. If we have condition el && e2 (e; and ez) then we
do not attempt to evaluate e if e; is false. This is because a conjunction
will always be false when the first conjunct is false, so the work would be
redundant.

Similarly, in a disjunction el || e2 (e; or e3) we do not evaluate ey if
ey is true. This is because a disjunction will always be true when the first
disjunct it true, so the work would be redundant.

In our linear search program, we just swap the two conjuncts in the exit
test.

1 int search(int x, int[] A, int n)

» //@requires 0 <= n && n <= \length(A);

3 //@requires is_sorted(A,0,n);

4+ /*@ensures (-1 == \result && 'is_in(x, A, 0, n))

5 || ((0 <= \result && \result < n) && A[\result] == x);
6 (@x/

7 {

s for (int 1 = 0; 1 < n && A[i] <= x; i++)

9 //@loop_invariant 0 <= i && i <= n;

1w if (A[i] == x) return i;

n return -1;

12 }

Now A[i] <= x will only be evaluated if i« < n and the access will be in
bounds since we also know 0 < ¢ from the loop invariant.

Alternatively, and perhaps easier to read, we can move the test into the
loop body.

LECTURE NOTES

Searching Arrays L4.7

1 int search(int x, int[] A, int n)

» //@requires 0 <= n && n <= \length(A);

s //@requires is_sorted(A,0,n);

4+ /*@ensures (-1 == \result && !is_in(x, A, 0, n))

5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @*/

7 {

s for (int 1 = 0; 1 < n; i++)

9 //@loop_invariant 0 <= i && i <= n;
10 {

11 if (A[i] == Xx) return i;

12 else if (A[i] > x) return -1;

13 }

112 return -1;

15 }

This program is not yet satisfactory, because the loop invariant does
not have enough information to prove the post-condition. We do know
that if we return directly from inside the loop, then A[i] = = and therefore
A[\result] == xholds. But we cannot deduce that !'is_in(x, A, 0, n)
if we return - 1.

Before you read on, consider which loop invariant you might add to
guarantee that. Try to reason why the fact that the exit condition must
be false and the loop invariant true is enough information to know that
lis_in(x, A, 0, n) holds.

LECTURE NOTES

10

11

12

13

14

15

16

17

Searching Arrays L4.8

Did you try to exploit that the array is sorted? If not, then your invariant
is most likely too weak, because the function is incorrect if the array is not
sorted!

What we want to say is that all elements in A to the left of index i are smaller
than x. Just saying A[i-1] < x isn’t quite right, because when the loop is
entered the first time we have i = 0 and we would try to access A[—1]. We
again exploit short-circuiting evaluation, this time for disjunction.

int search(int x, int[] A, int n)
//@requires 0 <= n & n <= \length(A);
//@requires is_sorted(A,0,n);
/*@ensures (-1 == \result && 'is_in(x, A, 0, n))
|| ((0 <= \result && \result < n) & A[\result] == X);
@x/
{
for (int i = 0; i < n; i++)
//@loop_invariant 0 <= i && i <= n;
//@loop_invariant i == 0 || A[i-1] < Xx;
{
if (A[i] == Xx) return i;
else if (A[i] > x) return -1;
//@assert A[i] < x;
}
return -1;

}

It is easy to see that this invariant is preserved. Upon loop entry, ¢ = 0.
Before we test the exit condition, we just incremented i. We did not return
while inside the loop, so A[i — 1] # x and also A[i — 1] < x. From these two
together we have A[i — 1] < . We have added a corresponding assertion
to the program to highlight the importance of that fact.

Why does the loop invariant imply the post-condition of the function?
If we exit the loop normally, then the loop condition must be false. So i > n.
We know A[n — 1] = A[i — 1] < z. Since the array is sorted, all elements
from 0 to n — 1 are less or equal to A[n — 1] and so also strictly less than x
and z can not be in the array.

If we exit from the loop because A[i] > z, we also know that A[i —1] <
so z cannot be in the array since it is sorted.

LECTURE NOTES

Searching Arrays L4.9

5 Analyzing the Number of Operations

In the worst case, linear search goes around the loop n times, where n is the
given bound. On each iteration except the last, we perform three compar-
isons: i < n, Ali] = x and A[i] > z. Therefore, the number of comparisons
is almost exactly 3 * n in the worst case. We can express this by saying that
the running time is linear in the size of the input (n). This allows us to pre-
dict the running time pretty accurately. We run it for some reasonably large
n and measure its time. Doubling the size of the input n’ = 2 * n mean that
now we perform 3 n’ = 3% 2xn = 2x (3 *n) operations, twice as many as
for n inputs.

We will introduce more abstract measurements for the running times in
the next lecture.

LECTURE NOTES

