
15-122: Principles of Imperative Computation
Lab D: passwordLab James Wu, Rob Simmons
Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.
These activities, like recitation, are meant to get you to review what we’ve learned, look at problems from
a different perspective and allow you to ask questions about topics you don’t understand. We encourage
discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab-dre .
% cd lab-dre

Grading: Finish tasks (1.a), (1.b), and (1.c) for 2 points, and additionally complete (1.d) and (1.e) for
3 points.

Dr. Evil’s passwords
Genius supervillian Dr. Evil is on the loose! Known for a series devilishly tricky yet completely vulnerable
assembly bombs, Dr. Evil has left a trail of destruction across Carnegie Mellon’s undergraduate computer
science curriculum. Authorities have been unable to track the whereabouts of this mastermind, but we
have new intelligence on Dr. Evil’s Super Secret Evil PlanTM to investigate.

You have been hired as an agent to crack the code of Dr. Evil’s Super Secret Evil Plan. It seems that
she left her secret plans in a password protected c0 binary file, accessible to you on the cluster computers
by typing evilplan. She also accidentally left her C0VM bytecode in a public folder! She seems to have
deleted most of the helpful comments, though, so we’ll need help figuring out the passwords by hand.
We were also able to acquire the main function’s source code in password-main.c0, but it relies on
functions that only appear in the bytecode file password.bc0.

You’ll need to read through password.bc0 to figure out some of the function calls. (Namely, the function
calls password1(), password2(), password3(), etc).

Each of the password functions either takes in a password as input, and returns a boolean, or simply
returns the password as an integer. Some passwords are numbers while others are strings. For the first
four passwords, the user’s input is passed to parse_int, but for the last password, it the string is passed
directly to the function. We’ve filled in the bytecode file with all the intelligence we have, so you’ll have
to figure out the rest.

We highly suggest you keep the C0VM writeup handy as you complete this lab.

To check if you’re correct, just run the password binary file, and type in the passwords you think are
correct:

% evilplan
Welcome to Dr. Evil’s Super Secret Evil Plan Terminal
This terminal should only be run by Dr. Evil to read the
Super Secret Evil Plan.
If you are anyone else, get OUT.
Password1:

Partial ASCII Table
32 20 ␣ 64 40 @ 96 60 ‘
33 21 ! 65 41 A 97 61 a
34 22 " 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ’ 71 47 G 103 67 g
40 28 (72 48 H 104 68 h
41 29) 73 49 I 105 69 i
42 2A * 74 4A J 106 6A j
43 2B + 75 4B K 107 6B k
44 2C , 76 4C L 108 6C l
45 2D - 77 4D M 109 6D m
46 2E . 78 4E N 110 6E n
47 2F / 79 4F O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 V 118 76 v
55 37 7 87 57 W 119 77 w
56 38 8 88 58 X 120 78 x
57 39 9 89 59 Y 121 79 y
58 3A : 90 5A Z 122 7A z
59 3B ; 91 5B [123 7B {
60 3C < 92 5C \ 124 7C |
61 3D = 93 5D] 125 7D }
62 3E > 94 5E ^ 126 7E ∼
63 3F ? 95 5F _

(1.a) Dr. Evil’s first password function seems pretty simple. It
seems to return an integer. What is it?

(1.b) Dr. Evil’s second password is a bit more complicated.
It uses vload and vstore to store some local variables.
Figure out what integer password2 returns!

(1.c) Dr. Evil’s third password is definitely more complicated.
It uses ildc to load integers from the integer pool.
What’s going on there?

(1.d) Dr. Evil’s fourth password has a loop! The func-
tion jumps around, doing something to an integer input.
What’s the password?

(1.e) Dr. Evil’s fifth and final password calls a helper function,
func5. Figure out what it’s doing, and crack the last
password! The ASCII table to the right, which includes
both integer and hex values, may come in handy.

(1.f) For the most clever of agents, Dr. Evil seems to have
left a hidden 6th password. She didn’t activate it in
the source code file, which means it must have been so
complicated even she didn’t want to deal with it! Figure
it out through the bytecode, and tell your TA if you think
you got it.

