
15-122: Principles of Imperative Computation
Lab 6: List(en) Up! Shyam Raghavan, James Wu
Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.
These activities, like recitation, are meant to get you to review what we’ve learned, look at problems from
a different perspective and allow you to ask questions about topics you don’t understand. We encourage
discussing problems with your neighbors as you work through this lab!

Grading: For full points, figure out the problems in at least the first three broken implementations of
sortedlist. For extra points, fix all broken implementations.

Introduction
Hyrum’s cloud-based motorcycle repair company C0 on Wheels is in trouble! In order to prepare for large
number of clients and their repairs on their motorcycles, he implemented a new data structure to keep
track of id numbers in sorted order. Unfortunately, all of his implementations seem to be having weird
problems! He’s hired you to figure out the problems with his code. The future of this SaaS(Scooter-repair
as a Service) company is in your hands!

Sorted Linked Lists
Hyrum’s data structure involves sorted linked lists of unique integers. This is an invariant that should
be maintained throughout the lab – all linked lists must be sorted and must not contain duplicates.
Another thing that’s different from the linked lists that you’ve seen in lecture and on homework is that
there is no “dummy node” at the end of the list. The end of the linked list is reached when the next
pointer on a node is NULL.

data	
   next	
  

-­‐2	
  
data	
   next	
  

6	
  
data	
   next	
  

12	
  

start	
  

data	
   next	
  

12	
  

Q

R	
  

S	
  

T	
  

U

start	
   start	
  

data	
   next	
  

6	
  
data	
   next	
  

6	
  
start	
  

data	
   next	
  

42	
  
data	
   next	
  

-­‐1	
  
start	
  

In the illustration above, Q is a sorted linked list containing no numbers, R contains just 12, and S
contains −2, 6, and 12. Neither T nor U is a valid sorted linked list (that is, is_sortedlist(T) and
is_sortedlist(U) will both return false).

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab-sorted .
% cd lab-sorted



(2.a) Write exhaustive test cases for sortedlist, to catch the bugs in the broken implementations.

The listlib.c0 file contains the following specification functions and helper functions, which
may be useful while testing:

bool is_segment(list* start, list* end);
bool is_sortedlist(sortedlist* L);
sortedlist* nil() /*@ensures \result != NULL; @*/;
sortedlist* cons(int i, sortedlist* S) /*@requires S != NULL; @*/;
string to_string(sortedlist* S) /*@requires S != NULL; @*/;

For example, cons(-2, cons(6, cons(12, nil()))) creates the sorted linked list S from the
example above.

Write your tests in the sortedlist-test.c0 file in the directory lab-sorted. Inside the folder,
you’ll find a few bad implementations of sortedlist, named sortedlist-bad1.c0, sortedlist-bad2.c0,
etc. To get credit for this part, compile your code with the commands:

% cc0 -x listlib.c0 sortedlist-bad1.c0 sortedlist-test.c0

% cc0 -x listlib.c0 sortedlist-bad2.c0 sortedlist-test.c0

% cc0 -x listlib.c0 sortedlist-bad3.c0 sortedlist-test.c0

% cc0 -x listlib.c0 sortedlist-bad4.c0 sortedlist-test.c0

% cc0 -x listlib.c0 sortedlist-bad5.c0 sortedlist-test.c0

Your code should indicate a problem for each of the bad implementations. Figure out what’s wrong
with each version of the code. Tell your TA the bugs in the code for credit!

Some hints:

- To get the most out of this lab, don’t spend a long time reading the bad implementations! Some
of the bugs are quite subtle, and we also want to be teaching you to write good tests.

- This might be obvious, but be thorough with your edge cases! Make sure the linked list behaves
exactly as specifies.

- Some tests cause null pointer dereferences. Some tests cause contract failures. Others cause test
failures. Debug each one separately.

- Some bugs "cancel" each other out and make the lists appear to work correctly and not fail any
contracts. The later versions of sortedlist may have multiple errors!


