
15-122: Principles of Imperative Computation
Lab 4: Fibonacci has Bad Internet Rob Simmons
Collaboration: In lab, we encourage collaboration and discussion as you work through the problems.
These activities, like recitation, are meant to get you to review what we’ve learned, look at problems from
a different perspective and allow you to ask questions about topics you don’t understand. We encourage
discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab-lf .

Grading: For 2 points, do all the tasks through (1.c). For 3 points, finish the rest of the lab.

Lagged Fibonacci
The regular Fibonacci numbers are given by the function F (i) where F (i) = i for i ∈ [0, 2) and where
F (i) = F (i− 1) + F (i− 2) for i > 2.

To calculate the lagged Fibonacci numbers, we give two additional numbers j and k, where 0 < j < k.
Then we can say that the lagged Fibonacci numbers are given by the function LF (i) where LF (i) = i
for i ∈ [0, k) and where LF (i) = LF (i− j) + LF (i− k).

1 int LF(int i, int j, int k)
2 //@requires 0 < j && j < k;
3 //@requires i >= 0;
4 {
5 if (i < k) return i;
6
7 int res = 0;
8 res += LF(i−j, j, k);
9 res += LF(i−k, j, k);

10 return res;
11 }

(1.a) Copy the code above into the lf.c0 file in your lab-lf directory. Use coin to confirm that the
regular Fibonacci numbers are just the lagged Fibonacci numbers where j = 1 and k = 2:

% rlwrap coin -d lf.c0
C0 interpreter (coin)
Type ‘#help’ for help or ‘#quit’ to exit.
--> LF(1,1,2);
1 (int)
--> LF(2,1,2);
1 (int)
--> LF(3,1,2);
2 (int)
--> LF(4,1,2);
3 (int)
--> LF(5,1,2);
5 (int)

Using rlwrap to wrap coin as shown above will make your life much easier: rlwrap gives you the ability
to press the up key to see and edit the last thing you wrote, much like you can do on the command line.



(1.b) For what values of n does it start getting too slow to calculate LF(n,1,2) in less than a few
seconds?

The reason this calculation gets so slow for such low values of n is because the recursive calls in LF do
a lot of repeated computation.

(1.c) Trace the execution of LF(5,1,2) in full on a large sheet of paper. Look over it and make sure you
understand what it is decribing. How many times in this trace do we (re) compute LF(2,1,2)?

Memoization
Because of the re-computation you saw in (1.c), this is a case where we can save ourselves a lot of time
by using a little space in the form of a memo table.

(2.a) Using LF as a specification function, write a specification function that checks that, for all i ∈
[0, len] (note the inclusive upper bound!), A[i] is either 0 or LF(i,j,k).

1 bool is_memo_table(int[] A, int len, int j, int k)
2 //@requires 0 <= len && len < \length(A);

(2.b) Write a new recursive function lf_memo, which uses a memo table to avoid re-computing values
by writing them into an array of integers.

Before the function does any work, it should check whether the value is already in the memo table,
and just return that value if it can. If you do have to compute the number, store it in the memo
table, so that future calls will not have to do the same work again.

1 int lf_memo(int[] A, int i, int j, int k)
2 //@requires 0 < j && j < k;
3 //@requires 0 <= i && i < \length(A);
4 //@requires is_memo_table(A, i, j, k);
5 //@ensures is_memo_table(A, i, j, k);
6 //@ensures \result == LF(i, j, k);

(2.c) Using lf_memo as a helper function, write fast_lf(i,j,k) that initializes a new array and calls
the helper to compute the lagged Fibonacci number.

1 int fast_lf(int i, int j, int k)
2 //@requires 0 < j && j < k;
3 //@requires 0 <= i;
4 //@ensures \result == LF(i, j, k);

(2.d) Check that your lf_memo function works by running it with -d for some small Fibonacci numbers.
Then run it in coin without -d so that you actually notice a speedup. Running with -d is slow as
LF is called in the postcondition.

(2.e) What is the 54, 321st Fibonacci number (mod 232, of course)? What is the 100, 000th lagged
Fibonacci number with j = 1 and k = 25?

Now would be a good time to compare notes with your neighbors if you haven’t done that already. How
do their functions look the same? How do they look different?


