15-122: Principles of Imperative Computation

Course Syllabus
Spring 2016
Hyrum Wright, Robert Simmons, and Iliano Cervesato

January 15, 2016

This course teaches imperative programming and methods for ensuring
the correctness of programs. It is intended for students with a basic un-
derstanding of programming (variables, expressions, loops, arrays, func-
tions). Students will learn the process and concepts needed to go from
high-level descriptions of algorithms to correct imperative implementa-
tions, with specific application to basic data structures and algorithms. Much
of the course will be conducted in a subset of C amenable to verification,
with a transition to full C near the end.

Either 21-127 Concepts of Mathematics or 15-151 Mathematical Foundations
for Computer Science is a co-requisite (must be taken before or in the same
semester). This course is a prerequisite for 15-213 Computer Systems and
15-210 Parallel and Sequential Data Structures and Algorithms.

1 Course Objectives

We categorize learning outcomes into computational thinking, programming
skills and data structures and algorithms.

Computational Thinking: Students should leave this course able to ex-
plain abstraction and other key computer science concepts, apply these
fundamental concepts as problem-solving tools, and wield contracts as a
tool for reasoning about the safety and correctness of programs.! In par-
ticular, we expect students to be able to:

The importance of computational thinking as a fundamental skill has been discussed by
Jeannette Wing (http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.
pdf) and by the Computer Science Teachers Association (http://www.iste.org/docs/
ct-documents/computational-thinking-operational-definition-flyer.pdf).

SYLLABUS JANUARY 15, 2016


http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf

15-122 Principles of Imperative Computation 2

1. Develop contracts (preconditions, postconditions, assertions, and loop
invariants) that establish the safety and correctness of imperative pro-
grams.

2. Develop and evaluate proofs of the safety and correctness of code
with contracts.

3. Develop and evaluate informal termination arguments for programs
with loops and recursion.

4. Evaluate claims of both asymptotic complexity and practical efficiency
of programs by running tests on different problem sizes.

5. Define the concept of programs as data, and write programs that use
the concept.

6. Defend the use of abstractions and interfaces in the presentation of
algorithms and data structures.

7. Identify the difference between specification and implementation.

8. Compare different implementations of a given specification and dif-
ferent specifications that can be applied to a single implementation.

9. Explain data structure manipulations using data structure invariants.

10. Identify and evaluate the use of fundamental concepts in computer
science as problem-solving tools:

(a) Order (sorted or indexed data),
(b) Asymptotic worst case, average case, and amortized analysis,
(c) Randomness and (pseudo-)random number generation, and

(d) Divide-and-conquer strategies.

Programming Skills: Students should leave this course able to read and
write code for imperative algorithms and data structures. In particular, we
expect students to be able to:

1. Trace the operational behavior of small imperative programs.
2. Identify, describe, and effectively use basic features of CO and C:

(a) Integers as signed modular arithmetic,

SYLLABUS JANUARY 15, 2016



15-122 Principles of Imperative Computation 3

(b) Integers as fixed-length bit vectors,

(c) Characters and strings,
(d) Boolean operations with short-circuiting evaluation
(e) Arrays,

(f) Loops (while and for),

(g) Pointers,
(h) Structs,

(i) Recursive and mutually recursive functions,

(j) Void pointers and casts between pointer types,

(k) Contracts (in CO0)

(I) Casts between different numeric types (in C),
3. Translate between high-level algorithms and correct imperative code.

4. Translate between high-level loop invariants and data structure in-
variants and correct contracts.

5. Write code using external libraries when given a library interface.

6. Develop, test, rewrite, and refine code that meets a given specification
or interface.

7. Develop and refine small interfaces.
8. Document code with comments and contracts.
9. Identify undefined and implementation-defined behaviors in C.
10. Write, compile, and test C programs in a Unix-based environment

using make, gcc, and valgrind.

Algorithms and Data Structures: Students should leave this course able
to describe the implementation of a number of basic algorithms and data
structures, effectively employ those algorithms and data structures, and
explain and interpret worst-case asymptotic complexity arguments. In
particular, we expect students to be able to:

1. Define and describe big-O notation, both formally and informally.
2. Compare common complexity classes like O(1), O(n), O(n * log(n)),

O(n?), and O(2").

SYLLABUS JANUARY 15, 2016



15-122 Principles of Imperative Computation 4

W

. Explain the structure of basic amortized analysis proofs that use po-
tential functions.

4. Apply principles of asymptotic analysis and amortized analysis to
new algorithms and data structures.

5. Recognize properties of simple self-adjusting data structures.
6. Recognize algorithms and data structures using divide-and-conquer.

7. Describe and employ a number of basic algorithms and data struc-
tures:
(a) Integer algorithms,
(b) Linear search,
(c) Binary search,
(d) Sub-quadratic complexity sorting (mergesort and quicksort),
(e) Stacks and queues,
(f) Pseudo-random number generators,
(g) Hash tables,
(h) Priority queues,
(i) Balanced binary search trees,
(j) Disjoint-set data structures (union/find), and

(k) Simple graph algorithms.

2 Resources

Lecture notes: There is no textbook for this course; lecture notes and other
resources will be provided through the “Schedule” page of the course web-
site. We do not expect students to read lecture notes before lecture, but
students interested in reading ahead can look at a previous instance of
the course: Fall 2015, Summer 2015, Spring 2015, Fall 2014, Summer 2014,
Spring 2014, Summer 2013, Spring 2013, Fall 2012, Summer 2012, Spring
2012, Summer 2011, Spring 2011, or Fall 2010.

SYLLABUS JANUARY 15, 2016


http://www.cs.cmu.edu/~fp/courses/15122-f15
http://www.cs.cmu.edu/~rjsimmon/15122-m15
http://www.cs.cmu.edu/~rjsimmon/15122-s15
http://www.cs.cmu.edu/~rjsimmon/15122-f14
http://www.cs.cmu.edu/~rjsimmon/15122-m14
http://symbolaris.com/course/pic14.html
http://www.andrew.cmu.edu/user/annpenny/15122-m13/webby/home.html
http://symbolaris.com/course/pic13.html
http://www.cs.cmu.edu/~fp/courses/15122-f12/
http://www.cs.cmu.edu/~jamiemmt/teaching/su-122/index.html
http://www.andrew.cmu.edu/course/15-122/
http://www.andrew.cmu.edu/course/15-122/
http://www.cs.cmu.edu/~wlovas/15122-r11/
http://www.cs.cmu.edu/~fp/courses/15122-s11/
http://www.cs.cmu.edu/~fp/courses/15122-f10/

15-122 Principles of Imperative Computation 5

Online resources: All course resources will all be linked from the course
home page.

e Home page (https://www.cs.cmu.edu/~rjsimmon/15122-m15/)

Schedule, office hours, lecture notes, written homework hand-in.

e Autolab (https://autolab.cs.cmu.edu/courses/15122-m15/)

Grades, programming homework hand-in, style comments.

e Piazza (https://piazza.com/cmu/summer2015/15122/)

Announcements, discussions, questions.

Archived exams: Midterms and final exams from previous semesters, as
well as sample solutions, will be posted before each exam.

Programming tools: In the first nine weeks the course uses C0, a small
safe subset of C augmented with a layer to express contracts. A tutorial for
this language is available online athttp://c0.typesafety.net/tutorial/.
This language has been specifically designed to support the student learn-
ing objectives in this course. In particular it provides garbage collection
(freeing students from dealing with low-level details of explicit memory
management), fixed range modular integer arithmetic (avoiding complex-
ities of floating point arithmetic and multiple data sizes), an unambiguous
language definition (guarding against relying on undefined behavior), and
contracts (making code expectations explicit and localize reasoning).

In the last six weeks the course transitions to C, in preparation for sub-
sequent systems courses. Emphasis is on transferring positive habits de-
veloped in the use of C0, and on practical advice for avoiding the pitfalls
and understanding the idiosyncrasies of C. We use the valgrind tool to test
proper memory management.

SYLLABUS JANUARY 15, 2016


https://www.cs.cmu.edu/~rjsimmon/15122-m15/
https://autolab.cs.cmu.edu/courses/15122-m15/
https://piazza.com/cmu/summer2015/15122/
http://c0.typesafety.net/tutorial/

15-122 Principles of Imperative Computation 6

3 Student Evaluation

The course is graded on a 1000-point scale.
o Homework (450 points)

- Weekly programming assignments (usually due Thursday 10pm)
— Weekly written assignments (usually due Monday 5pm)

¢ 1 Final (250 points), date TBA
e 2 Midterms (125 points each), February 17 and March 31
o In-Lecture/In-Recitaiton Quizzes and Labs (50 points max)

Labs and quizzes are primarily intended to help you and are graded on a
“check minus, check, check plus” scale. On a point scale, this is worth 1,
2, and 3 points, respectively. The 50 points available for lab credit can be
obtained with a “check” for every lab and quiz. The maximum combined
quiz and lab grade is 50, even though it is possible to get significantly more
than 50 points.

3.1 Style grading

Students are expected to write code with good programming style; a re-
view of what constitutes good style is given at http://www.cs.cmu.edu/
~rjsimmon/15122-s15/etc/styleguide.pdf.

For a small subset of assignments (likely 2 or 3), TAs will review all final
submissions by hand. If there are significant style issues, they may give a
non-passing grade on style, accompanied by “FIX STYLE” annotations in
their code. Students who are told to redo their style must address these
issues and discuss their revisions with a TA within ten days of the style
grades being posted. Any TA or instructor can do style re-grading at any
office hour; you do not have to go to the TA that assigned the grade.

3.2 Grade appeals

After each exam and homework assignment is graded, your score will be
posted on the Autolab gradebook. We will make the utmost effort to be fair
and consistent in our grading. Any TA is permitted to fix simple arithmetic
errors (and, at their discresion, other blindingly obvious grading errors).
For any other grading issues, you must request a regrade as follows:

SYLLABUS JANUARY 15, 2016


http://www.cs.cmu.edu/~rjsimmon/15122-s15/etc/styleguide.pdf
http://www.cs.cmu.edu/~rjsimmon/15122-s15/etc/styleguide.pdf

15-122 Principles of Imperative Computation 7

e Write or print a hardcopy letter explaining in detail where and why
you think there was a mistake in grading.

e Hand-deliver the cover letter to Barb Grandillo in GHC 6010. Slide
them under her door if she is not in. Verbal or email requests will
NOT be accepted.

e Every written homework and midterm exam is handed back in a
Monday lab. All regrade requests must be recieved within ten days of
the work being handed back in lab or (for all graded work not handed
back in lab) within ten days of the grade being posted to Autolab.

(This policy adapted from 15-213. Thanks, 15-213)

3.3 Final grades

Absent exceptional circumstances, students with a total score of 900 and
above will get an A, 800 and above will get a B, 700 and above a C, and 600
and above a D. This assignment assumes that the makeup of a student’s
grade is not wildly anamalous: exceptionally low overall scores on exams,
programming assignments, or written assignments may be treated as an
exceptional circumstance.?

Grade cutoffs may be lowered based on the difficulty of exams and as-
signments. Precise grade cutoffs will not be discussed at any point during
or after the semester.

For students very close to grade boundaries, instructors may, at their
discretion, consider participation in lecture and recitation and exam per-
formance when assigning the final grade.

4 Policies

4.1 Class presence and participation

Active participation by you and other students will ensure that everyone
has the best learning experience in this class. We may take participation
in lecture and recitation (the one you are registered for) into account when

2 Almost a quarter of the students who recieved a B in Fall 2014 had a 90%-100% average
on programming assignments, an 80%-90% average on written homeworks, and a 70%-
80% average on exams. Grades distributed along these lines will therefore, of course, not
be treated as anamalous.

SYLLABUS JANUARY 15, 2016



15-122 Principles of Imperative Computation 8

setting final grades. Therefore, please attend the lecture, lab, and recitation
you are registered for.

4.2 Laptops and mobile devices

As research on learning shows, unexpected noises and movement automat-
ically divert and capture people’s attention, which means you are affecting
everyone’s learning experience if your cell phone, pager, laptop, etc. makes
noise or is visually distracting during class.

Therefore, please silence all mobile devices during class. You are wel-
come to use laptops for note-taking, but if you are able, please do so from
the back of the classroom. If you are not in the back of the classroom, it is
especially important that you do not use your laptop for anything besides
note-taking. Do not work on assignments for this or any other class while
attending lecture or recitation.

4.3 Deadlines

There will generally be two deadlines every week:

¢ 5:30pm Monday - Written homework due (in lab or in the box outside
of GHC 5201).

e 10pm Thursday - Programming homework due (via Autolab).

4.4 Late work

e Programming: each student has four grace days, at most one of which
can be used on any of the 10 programming assignments to extend the
deadline by 24 hours to 10pm on Friday (assuming a Thursday 10pm
deadline). Late submissions from students who have exhausted their
late days will receive no credit, and no work will be accepted more
than 24 hours after the original deadline.

o Written: Unexcused late written homework can be turned in to Robert
Simmons immediately after either lecture on Tuesday for a 6-point
penalty. Grace days cannot be used for written homeworks.

4.5 Personal accommodations
Reasonable exceptions to the late work policy may be made for family, reli-

gious, athletic, or other external obligations if we know about them well in

SYLLABUS JANUARY 15, 2016



15-122 Principles of Imperative Computation 9

advance (at least one week, assuming circumstances make this possible). If
you have other extenuating circumstances, such as an extended illness that
affects your ability to complete the course, please notify the instructors.

We do not do makeups for quizzes. If you will miss a significant num-
ber of labs, recitations, or lectures for a valid reason, we will take this into
account when assigning final grades.

Students with disabilities: If you wish to request an accommodation due
to a documented disability, please inform your instructor and contact Dis-
ability Resources as soon as possible (access@andrew. cmu. edu). Special ac-
commodation for exams will be coordinated by Robert Simmons, and must
be requested for each exam separately a week in advance. Other requests
for deadline flexibility will be handled on a case-by-case basis.

4.6 Academic integrity

The university policies and procedures on academic integrity will be ap-
plied rigorously; all students are required to fill out the form at http://
www.cs.cmu.edu/~rjsimmon/15122-s15/etc/acad. pdf indicating that they
understand and accept this policy.

The value of your degree depends on the academic integrity of yourself
and your peers in each of your classes. It is expected that, unless otherwise
instructed, the work you submit as your own will be your own work and
not someone else’s work or a collaboration between yourself and other(s).

Please read the University Policy on Academic Integrity carefully to un-
derstand the penalties associated with academic dishonesty at Carnegie
Mellon. In this class, cheating/copying/plagiarism means copying all or
part of a program or homework solution from another student or unautho-
rized source such as the Internet, knowingly giving such information to an-
other student, or giving or receiving unauthorized information during an
examination. In general, each solution you submit (quiz, written assignment,
programming assignment, midterm or final exam) must be your own work. In the
event that you use information written by another person in your solution,
you must cite the source of this information (and receive prior permission
if unsure whether this is permitted). It is considered cheating to compare
complete or partial answers, discuss details of solutions, or sit near another
person who is taking the same course and try to complete the assignment
together.

Your course instructor reserves the right to determine an appropriate
penalty based on the violation of academic dishonesty that occurs. Viola-

SYLLABUS JANUARY 15, 2016


http://www.cs.cmu.edu/~rjsimmon/15122-s15/etc/acad.pdf
http://www.cs.cmu.edu/~rjsimmon/15122-s15/etc/acad.pdf
http://www.cmu.edu/policies/documents/Academic%20Integrity.htm

15-122 Principles of Imperative Computation 10

tions of the university policy are likely to result in severe penalties including failing
this course and possible expulsion from Carnegie Mellon University. If you have
any questions about this policy and any work you are doing in the course,
please feel free to contact your instructor for help.

We will be using the Moss system to detect software plagiarism.

It is not considered cheating to clarify vague points in the assignments,
lectures, lecture notes, or to give help or receive help in using the computer
systems, compilers, debuggers, profilers, or other facilities. It is not cheat-
ing to review graded assignments or exams with students in the same class
as you, but it is considered unauthorized assistance to share these materials
between different iterations of the course.

SYLLABUS JANUARY 15, 2016



	Course Objectives
	Resources
	Student Evaluation
	Style grading
	Grade appeals
	Final grades

	Policies
	Class presence and participation
	Laptops and mobile devices
	Deadlines
	Late work
	Personal accommodations
	Academic integrity


