
15-122: Principles of Imperative Computation

Recitation 23 Josh Zimmerman

Demystifying the C0 VM – the operand stack
In claclab, we had a stack of integer values that we manipulated. We have a similar stack for the C0 VM,
but it is much more advanced. For the VM, we take advantage of the void * type in C to store values
of any type on the stack.

We’ve seen how we can use void * to support functions that take can take arguments that pointers to
a variety of types, but we can also cast things that aren’t even pointers to void *. This is useful for the
VM, since we can just cast the values we want to store on the stack to void *.

Casting values to void * allows us to store any kind of value on the stack, meaning that we actually
only need to have a single stack that can store all of our variables!

Note: from here on, I’ll refer to void * as c0_value, since that’s how we refer to it in the code and it
helps us remember what the actual meaning of the type is.

There are two inline functions we’ve given you that are important here: INT and VAL. The VAL function
takes a 32-bit signed int and converts it to a c0_value, and the INT function takes in a c0_value and
converts it to a 32-bit signed int. It’s very very important to note that the argument to INT must come
from a call to VAL. Otherwise, the result is unpredictable.

For any signed 32-bit integer x, we guarantee that INT(VAL(x)) == x.

Other casts for the stack (of pointers to c0_value are much more straightforward).

Demystifying the C0 VM – the program counter
For the C0 VM, we keep an array of bytecode to execute. We use an index into this array to keep track
of the current instruction we’re executing. Every time we want to execute an instruction we look at
P[pc], where P is the array that contains the bytecode and pc is the program counter. The number at
P[pc] tells us which instruction to execute, and there may be arguments to the instruction that come
after the instruction itself.

When we’re done executing a particular instruction, we change the pc so that it points to the next
instruction we want to execute. How exactly we do this change depends on the instruction. For some
instructions, we simply increment pc past the arguments to the instruction we just executed, but for
others we need to do more complex operations. For other instructions (the control flow operations) we
change pc depending on the arguments to the instruction.

This can be very tricky, since we need to support changing pc by a negative amount, but the arguments
we get are two unsigned bytes. An challenging part of the VM is figuring out how to get a signed offset
from these two unsigned bytes.

Demystifying the C0 VM – the call stack
In C0 , we keep track of function calls with a call stack.

Each function has its own frame, which is defined as:

1 struct frame {
2 c0_value ∗V; /∗ local variables ∗/
3 stack S; /∗ operand stack ∗/
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4 ubyte ∗P; /∗ function body ∗/
5 size_t pc; /∗ return address ∗/
6 };

Each time we call a function, we need to save its frame onto the call stack so that when the function
we’re calling returns we can restore the state of the current function.

If you think back to clac, this is somewhat like the stack of queues we used when calling functions, except
that for the VM, we need to store more information than just the function definition — we also have a
separate array of local variables and a separate operand stack for each function.

Also, since we’re keeping the instructions in an array rather than a queue, we need to keep track of the
instruction we should execute after a function returns.

Note that we keep instructions in an array to allow us to freely jump around from an instruction to an
earlier instruction (this is useful in, for example, a loop).

Testing
While working on the VM, it’s important to remember the ideas of testing that we’ve used throughout the
semester. In particular, it’s important to remember to break the code you write up into small, byte-sized
chunks that you can easily test.

For example, the control flow instructions all use the operation of combining two unsigned bytes and
getting back a signed 16-bit (two byte) int.

Since that code involves casting (which is hard to think about) and is present in many different cases, it
makes sense to have a helper function to do this for us.

Having helper functions is also great since it helps us write test cases — we can write test cases in C to
specifically test just that function. We can also write C0 programs and compile them to test, but that
makes it much harder to get useful information about what a problem is: If a C0 program that you run
returns an incorrect result, that doesn’t tell you much about what the bug is.

However, if you’re testing one very specific function and it fails, it’s much easier to figure out what’s
wrong since you’ve narrowed it down already.

Just like what we did with tests throughout the semester, testing lots of different kinds of cases is very
important. Here, some important cases are a jump that’s 0, one that’s small and positive, one that’s
large and positive, one that’s small and negative, and so on.

1 int16_t pack(ubyte o1, ubyte o2) {
2 // ...
3 }
4 int main() {
5 size_t start = 1000000;
6 printf("No jump: %zu\n", start + pack(0x00, 0x00));
7 printf("Small positive jump: %zu\n", start + pack(0x00, 0x01));
8 printf("Large positive jump: %zu\n", start + pack(0x01, 0xFF));
9 printf("Huge positive jump: %zu\n", start + pack(0x7F, 0xFF));

10 printf("Small negative jump: %zu\n", start + pack(0xFF, 0xF1));
11 printf("Large negative jump: %zu\n", start + pack(0xFE, 0x00));
12 printf("Huge negative jump: %zu\n", start + pack(0x80, 0x00));
13 }

Print statements also remain useful, and we’ve already put a basic one in c0vm.c that you may find
useful and may wish to extend.
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