
15-122: Principles of Imperative Computation

Recitation 22 Solutions Josh Zimmerman

Modifying heaps.c to free non-empty heaps
In Huffman lab, we had to make sure that the priority queue was empty before we freed it. But what if
instead we use a function pointer to let us free non-empty queues without leaking memory?

We need to modify our heaps to have a elem_free function as part of the data structure.

Let’s write this now. Here’s the start of the code for the new version of pq_free, and some modified
code to support a function pointer.

1 typedef void (∗elem_free_t)(elem);
2 struct heap_header {
3 int limit; /∗ limit = capacity+1 ∗/
4 int next; /∗ 1 <= next && next <= limit ∗/
5 elem∗ data; /∗ \length(data) == limit ∗/
6 elem_free_t elem_free; /∗ Non−NULL pointer to function that frees elems ∗/
7 };
8 typedef struct heap_header∗ heap;
9

10 heap pq_new(int capacity, elem_free_t elem_free) {
11 REQUIRES(capacity > 0);
12 REQUIRES(elem_free != NULL);
13 heap H = xcalloc(1, sizeof(struct heap_header));
14 H−>limit = capacity+1;
15 H−>next = 1;
16 H−>data = xcalloc(capacity+1, sizeof(elem));
17 H−>elem_free = elem_free;
18 ENSURES(is_heap(H));
19 return H;
20 }
21
22 void pq_free(heap H) {
23 REQUIRES(is_heap(H));
24 for (int i = 1; i < H->next; i++) {
25 (*(H->elem_free))(H->data[i]) // Free each element of the heap
26 }
27 free(H->data);
28 free(H);
29 }

1


