
15-122: Principles of Imperative Computation

Recitation 21b Josh Zimmerman

Trie, trie again
Let’s revisit the idea of tries, since I’m sure a lot of you were preoccupied by the midterm when we went
over them on Thursday.

The basic idea of a trie is that for some purposes, like spell checking and boggle, it often makes sense to
see if a string is the prefix of some word in a dictionary. (That way, we can more quickly realize that we
can stop checking some sequence of letters in boggle, and more quickly flag that a word is misspelled)

To do this we keep a tree that contains letters representing prefixes. This is a bit hard to describe, so
we’ll use this diagram. (The diagram is an example of a multi-way trie, which is one implementation of
the basic idea of looking up prefixes of strings.)

This multi-way trie contains the words “be”, “bed”, and the start of “baccalaureate”. Image credit:
Frank Pfenning.

The boolean flags in the trie are true if and only if that node in the trie is the end of a word. (It’s useful
to know when we’ve reached the end of a word so we can know that, for instance, “b” and “bacca” are
not words.)

This approach is great, since it lets us look up whether a word of length k is in the trie in O(k) time.

However, it has some major problems. In particular, we’ll be wasting a lot of space, since we have an
array of 26 elements at each level, of which we’ll only need a few the majority of the time.

We don’t have unlimited memory, so this is bad.

So, we’ll use a slightly more complicated but far smaller structure, a ternary search trie.

In a ternary search trie node, we’ll store a character c and three pointers, left, middle, and right.
Similarly to a binary search tree, the left subtree stores words starting with characters alphabetically less
than c and the right subtree stores words starting with characters alphabetically greater than c. middle
stores a subtrie with all words that start with c.

1



Here’s another image, again from lecture notes. It contains the word “be”, “bee”, “bed”, “baccalaureate”
(we only show the first few letters in the diagram to save space, but if we were implementing a trie we’d
store the whole word), and “or”. Here, we represent the end of a word with an X.

o	  

b	  

e	  

e	  

r	  

d	  

a	  

c	  

First	  Character	  

Second	  Character	  

Third	  Character	  

Trie interface?
This is the interface of tries as we defined them in class.

1 typedef struct trie_header ∗trie;
2 trie trie_new();
3 void trie_free(trie TR);
4
5 /∗ Dictionary interface ∗/
6 void trie_insert(trie TR, char ∗s, elem e); /∗ strlen(s) > 0 ∗/
7 elem trie_lookup(trie TR, char ∗s); /∗ strlen(s) > 0 ∗/
8
9 /∗ Prefix search interface ∗/

10 typedef struct trie_node tnode;
11 tnode ∗trie_lookup_prefix(trie T, char ∗s);
12 elem tnode_elem(tnode ∗T); /∗ T != NULL ∗/

This interface is a little confusing, so let’s go over exactly what it does for us.

The basic functions we have are to create a trie and free it. Importantly, by looking at the source code
for trie_free, we can see that it doesn’t free any of the elems. (The reason for this is that it doesn’t
know what the elems are, or how to free them. We’ll talk about a solution to that problem soon, when
we introduce the idea of a function pointer.)

1 void tnode_free(tnode ∗T) {
2 REQUIRES(is_tnode_root(T));
3 if (T == NULL) return;
4 tnode_free(T−>left);
5 tnode_free(T−>middle);
6 tnode_free(T−>right);
7 free(T);
8 }
9 void trie_free(trie TR) {

10 REQUIRES(is_trie(TR));
11 tnode_free(TR−>root);

2



12 free(TR);
13 }

Some other important interface functions we have are trie_insert and trie_lookup. These allow us
to simply use the trie as an implementation of an associative array.

The real benefit of using a trie over a hash table or a BST, is to be able to use prefixes to look things
up, so we need functions to do that too.

Accordingly, we have trie_lookup_prefix and tnode_elem. trie_lookup_prefix returns a tnode
(which is a pointer to some part of the trie) if the prefix was found in the trie, or NULL otherwise.

We can use tnode_elem to convert from a tnode to an elem. This function returns NULL if there’s no
elem at this spot in the trie and otherwise returns the elem that was stored at this location in the trie.

Boggle
Boggle is a word game that we can use a trie to solve. The basic idea is that we have a four-by-four grid
of random letters. We try to make words out of them by drawing a line through letters.

T	   E	   A	   C	  

A	   B	   E	   C	  

E	   D	   E	   A	  

R	   U	   A	   L	  
An example boggle board. The lines show words.

We can use the trie interface to help us with this. Let’s talk about how, and how we might improve the
interface to allow us to find all words in a boggle board as quickly as possible.

3


