
15-122: Principles of Imperative Computation

Recitation 14 Josh Zimmerman

Hash tables
There are a few ideas that are key to hash tables:

Key-value mapping A hash table maps keys to values. The keys and values can be of any type. This
idea is useful in a wide variety of applications including dictionaries (keys are words and values are
their definitions) and databases (keys might be user IDs and values might be the user’s data).

Hash function A hash table maps keys to values by applying a hash function to the key. This function
transforms the key into a non-negative integer that can be used to index into an array. However,
it’s impractical to just use any non-negative integer for an index (we can’t have an array that has
space for 2,147,483,647 items), so we use the mod operator (%) to restrict the value to be within
the size of the array we’re using. More concretely, if our array has size m, we use index h(k)%m,
where h is our hash function and k is our key.

Load factor The load factor of a hash table is n
m where n is the number of items we’re storing in the

hash table and m is the length of the array we’re using for the hash table. If the load factor is too
high, we’ll have lots of collisions and should consider resizing the hash table to improve speed.

Collisions If there are more than m elements that we want to store in our hash table, we’ll try to put
two values at the same index, since there aren’t enough places in the array to store values.

This creates a collision, so we need some kind of collision resolution policy to handle this issue.

Even if we had a table that was large enough, we’d still need to handle collisions. There’s a well
known problem called the birthday problem which states that if people’s birthdays are uniformly
distributed (not counting leap days) and we have a group of 23 people, there is a 50% chance that
two of them will have the same birthday.

I won’t delve into detail about the math behind it here, but the problem is very relevant to hashing:
if 2,500 keys are hashed with a uniform hash function (one which uses every index in the array
equally) into a hash table with capacity 1,000,000, there is roughly a 95% chance that at least two
keys will be put into the same place in the array.

One collision resolution policy we’ll talk about a lot in this class is called separate chaining, where
for each entry in the hash table we store a linked list of things that hashed to that index in the
array. To be a bit more clear, here’s a sketch of a hash table using separate chaining to resolve
conflicts, courtesy of Professor Pfenning.

1

Note that we have to keep the key along with the value for each entry in the hash table so we can
check if we have come to the correct entry in the chain.

What goes in the library? The client?
In lecture, we talked about some code that the client needs to implement and some code that the library
needs to implement. How can we tell the difference?

A good rule of thumb is that we want the library to be as general as possible, but still do everything
necessary for a hash table to work. For instance, a library should not implement a specific hash function
since we want to be able to put data of any type into our hash function, and a user of our hash table
library may define some struct that requires a different hash function from anything we’ve seen before.

However, the ht_insert and ht_lookup functions are functions that are the same regardless of what
type of data we’re storing in the hash table, so the hash table library should implement them.

This distinction between interface and implementation, and library and client, is incredibly important, so
please ask questions if you have any.

ht_insert
Let’s go over the ht_insert function we wrote in lecture.

1 void ht_insert(ht H, elem e)
2 //@requires is_ht(H);
3 //@requires e != NULL; // We require that elem is a pointer type
4 //@ensures is_ht(H);
5 //@ensures ht_lookup(H, elem_key(e)) != NULL;
6 {
7 key k = elem_key(e);
8 int i = hash(k, H−>capacity);
9

10 chain∗ p = H−>table[i];
11 while (p != NULL)
12 //@loop_invariant is_chain(p, i, H−>capacity);
13 {
14 //@assert p−>data != NULL;
15 if (key_equal(elem_key(p−>data), k)) {
16 /∗ overwrite existing element ∗/
17 p−>data = e;
18 return;
19 } else {
20 p = p−>next;
21 }
22 }
23 //@assert p == NULL;
24 /∗ prepend new element ∗/
25 chain∗ q = alloc(struct chain_node);
26 q−>data = e;
27 q−>next = H−>table[i];
28 H−>table[i] = q;
29 (H−>size)++;
30 return;
31 }

2

Let’s walk through two insertions: one where we update an existing key and one where we add a new
key.

Note that the hash function here is h(x) = |x|%5 (we’re working with a size-5 array).

We’ll step through updating the key 30 to have the value ‘z’.

I’ll start diagrams on line 8, after we have extracted the key and the hash.

The key 25 is not equal to 30, so we keep going:

Now, the key 30 is equal to 30, so we update the value to ‘z’ and return.

Now, we’ll work through a problem: draw diagrams for insertion of a new element into the above hash
table. We’ll insert the key 14 with the value ‘j’ into the table. As usual, this is at the end of the recitation
handout.

Alternate collision resolution policies
Separate chaining is just one possible collision resolution policy. There are several other possibilities.

One is linear probing, in which we just iterate over the indices in the hash table if we have a collision
(if we first try index x, we’d next try index x + 1, then x + 2, etc). This has the disadvantage that if
there are a lot of collisions, lookup becomes very slow because of the large block of elements right next
to each other.

Quadratic probing attempts to resolve the problem of elements being grouped into large blocks by using
index x, then index x+1, then x+4, then x+9, etc. This has a very large problem: there’s no guarantee

3

of finding a place to insert something if the array is sufficiently full.

Separate chaining, then, is a solution that starts to look pretty decent since we can fit as many elements
as we want into the hash table. However, in the worst case it can perform poorly: If someone knows our
hash function and table size they could give input to our hash table such that we’d try to put it all in
the same slot of the hash table.

We can potentially improve this if we require that clients give us a comparison function and then internally
use a binary search tree instead of a linked list in each spot of the array. (It’s possible that we could
get a worst case here and that it wouldn’t be any better than a linked list, so for an improvement in all
cases, we’d need a balanced binary tree. We’ll talk about how to implement those later in the semester.)

Insertion into a hash table
Insert the key 14 with the value ‘j’ into the hash table pictured earlier in the handout, after updating the
key ‘30’ to ‘z’. Start your diagrams after line 8 of the insert code.

Hashtable lookup
Next, work together to write hashtable lookup code, using the following interface and struct definition
of hashtables:

1 struct chain_node {
2 elem data; /∗ data != NULL ∗/
3 struct chain_node∗ next;
4 };
5 typedef struct chain_node chain;
6
7 struct ht_header {
8 int size; /∗ size >= 0 ∗/
9 int capacity; /∗ capacity > 0 ∗/

10 chain∗[] table; /∗ \length(table) == capacity ∗/
11 };
12 typedef struct ht_header∗ ht;
13
14 /∗ ht_lookup(H, k) returns NULL if key k not present in H ∗/
15 elem ht_lookup(ht H, key k)
16 //@requires is_ht(H);
17 ;

4

