
15-122: Principles of Imperative Computation

Recitation 11 Josh Zimmerman

Iterative vs. recursive factorial
Consider the following implementations of the factorial function, and try to prove that it satisfies its
postcondition.

1 int factIter(int n)
2 //@requires n >= 0;
3 {
4 // You can assume that this function is correctly implemented.
5 // That is, you can assume factIter(n) is equal to n!
6 }
7
8 int factRec(int n)
9 //@requires n >= 0;

10 //@ensures \result == factIter(n);
11 {
12 if (n == 0) {
13 return 1;
14 }
15 else {
16 return n ∗ factRec(n − 1);
17 }
18 }

Solution:

Partial correctness.

Base case First, we consider the base case. When n == 0, we know that we return 1, which is 0!, so
it’s equal to factIter(0).

Inductive hypothesis Next, we assume that factRec(k) satisfies the postcondition for some int k
where k >= 0, or in other words that the result of factRec(k) is equal to factIter(k).

Inductive step Now, we consider factRec(k + 1). Since k >= 0, we know k + 1 > 0.

Therefore, we’ll be in the else case and will return (k + 1) * factRec(k + 1 - 1), which is
equal to (k + 1) * factRec(k). We’re allowed to make this call since we know that k + 1 >
0 and so k >= 0.

By the inductive hypothesis, factRec(k) is equivalent to factIter(k) and by the definition of
factorial (and the assumption that factIter is correct) (k + 1) * factIter(k) is equal to
factIter(k + 1).

Thus, the function has partial correctness.

Termination:

We’ve shown that if the function terminates, it is correct, but we need to show that the function
terminates.

1



By the precondition, we know that n >= 0.

Base case We also know that if n == 0 then we terminate immediately.

Inductive hypothesis Assume that factRec(k) terminates for some k >= 0, where k is an int.

Inductive step Then, consider factRec(k + 1). We recurse and call factRec(k). By our inductive
hypothesis, factRec(k) terminates, so therefore factRec(k + 1) terminates as well.

Thus, for all n >= 0, this function terminates.

2


