
15-122: Principles of Imperative Computation

Recitation 7 Josh Zimmerman

Unit testing
(Note: A large amount of content in this handout comes from Jonathan Clark, who TAd 15-122 in Fall
2012.)

It’s really important to always test your code as you write it. Why, you ask? Well, it’s effectively
impossible to write bug-free code all of the time. However, you want your code to work. So, testing your
code is essential to help you find and eliminate bugs.

Why should you do it as you write it? The sooner you catch a bug, the easier it will be to fix. If you
wait a long time between writing code and testing it, you might not remember exactly how your code
is supposed to work. Not understanding exactly how your code is supposed to work makes debugging
much harder.

In addition, if you write a buggy function foo and then write a function bar that calls foo, you might
see incorrect behavior in bar that is actually caused by the bug in foo. This kind of situation would
make tracking down the actual source of the bug far more difficult than it has to be.

So, unit test your program! If you test just one function at a time, it’ll be far easier to determine where
the problem in your program lies.

Here are some major important points about unit testing.

• Use unit tests to look at edge cases!

– Edge cases are inputs that the specification for your function allows but that might be tricky
to handle. They’re a common source of bugs because you may need to handle edge case
inputs differently from normal cases.

– Some common edge cases with ints are int_min(), int_max(), 0, -1, and 1. (These are
not all of the cases! Depending on what function you are writing there may be other inputs
that are edge cases.)

– For arrays, some edge cases you can run into are the empty array, an array of length 1, and
very long arrays. Again, these aren’t all of the edge cases — what the edge cases are depends
on what the function you wrote is.

• Use unit tests to help you narrow down where exactly bugs in your program lie.

– If all that you know is that your program produces the incorrect result, it’s essentially im-
possible to debug it. If you write good unit tests for all of your functions, you’ll be able to
run those and narrow down the bug to specific function/functions, thus making your code far
easier to debug.

– Related to this, you should write tests that exercise all of your code: If you have an if
statement with two branches, make sure you have a test for each branch. If you don’t, one
of them might be incorrect and you’d never know it. (Or you’d have a hard time tracking it
down if you think whatever bug there is comes from somewhere else.)

• Use unit tests to make sure your contracts pass when they should pass and fail when they should
fail

1



– Contracts are very useful, but only if they’re correct. Incorrect contracts could lead you to
thinking that part of your code is wrong when it actually is right, or vice versa. If you test
your contracts, you’ll be able to make sure that they are correct and won’t mislead you.

Taking time to write good tests can save massive amounts of debugging time, since good tests will tell
you exactly where in your code the bug lies.

When testing your code, you should start with the assumption that it’s incorrect for some input, and
that you want to find that input. It’s critical to think about corner cases and edge cases — those are
things that are out of the ordinary, but are allowed by the preconditions of your function.

If you’re trying to test code, it’s really important to come at it with the attitude that you want to break
it. Pretend your worst enemy wrote the code, and that you want to show them all of the problems with
it to get them back for that thing they did, even the pedantic weird cases that probably won’t come up
in practice. (This is necessary because in the real world you will have to deal with edge cases: if you
don’t, your code will break for at least some people [but probably thousands], possibly making whatever
you wrote unusable for them.)

Now, let’s get some practice with testing.

Practice!
Let’s work together! I have a few functions, with known specs. Let’s try to find all of the cases that
they’re broken in without looking at their source code.

Then, if there’s time, we can use our knowledge of the cases that they’re broken in to fix them.

2


