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15-122: Principles of Imperative Computation

Recitation 6 Solutions Josh Zimmerman

Binary search

So, we look at half of the array, and we then look at half of that, and so on. How many halvings will it
take until we're looking at 1 element?

Solution: We're looking for i such that - = 1, or n. = 2. The solution to this, of course, is logy(n) = i.
This gives a rough approximation of how the algorithm’s performance changes as the input array size
grows. We'll talk more formally about this next week.

Here's the code for binary search. We're going to look at a proof of its correctness.

int binsearch(int x, int[] A, int n)

//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);

/+@ensures (—1 == \result && !is_in(x, A, 0, n))

|| ((0 <= \result & \result < n) & A[\result] == x);
@x/
{
int lower = 0;
int upper = n;
while (lower < upper)
//@loop_invariant 0 <= lower && lower <= upper && upper <= n;
//@loop_invariant lower == 0 || A[lower—1] < x;
//@loop_invariant upper == n || Alupper] > x;
{
int mid = lower + (upper—1lower)/2;
if (A[mid] < x) {
// We can ignore the bottom half of the array now, since we
// know that every thing in that half must be less than x
lower = mid+1;
} else if (A[mid] > x) {
// We can ignore the upper half of the array, since we know
// that everything in that half must be greater than x
upper = mid;
} else {
//@assert A[mid] == x;
return mid;
}
}
//@assert lower == upper;
return —1;
}

It's not immediately obvious from looking at this code that it works. So, let's prove that it does, by
showing that the precondition implies the loop invariant will be true at the start of the first loop, that
if the loop invariant is correct after one iteration of the loop it will be correct after the next iteration,
that if the loop terminates and the loop invariants hold, then the postcondition holds, and that the loop
does terminate.

Solution:



Precondition implies loop invariant.

Based on the precondition, we know that 0 <= n. By lines 9 and 10, we know that 0 <= lower and
upper <= n. We also know that lower <= upper, since lower == 0 and upper == n and 0 <= n.

Further, lower == 0 and upper == n so the other two loop invariants are true.

Loop invariants are preserved.

Suppose the loop invariants are true at the start of one loop. We now look at one iteration of the loop.
mid’ = lower + (upper - lower) / 2
We have 3 cases to consider.

Either A[mid’] < x, A[mid’] > x, or A[mid’] == x.

Almid’] < x: In this case, lower’ = mid’ + 1. Sincemid’ >= lower ((upper - lower)/2 is non-negative),
we know that lower’ > lower >= 0. Since we're in the body of the loop, we know lower
< upper. Suppose now that lower’ > upper. Then, lower + (upper - lower)/2 + 1 >
upper. Rearranging, we get that 2*lower + upper - lower + 2 > 2xupper. Simplifying, we
get lower + 2 > upper. Since lower < upper, this means that lower = upper - 1. However,
in that case, (upper - lower)/2 == 0 because we round, so lower’ == upper. Thus, lower
<= upper. upper’ == upper, so it must still be less than or equal to n.

Therefore, the first loop invariant holds.

The second loop invariant must hold because A[mid’] < x and lower’ = mid’ + 1. Thus,
Allower’ - 1] == A[mid’] < x. (Note that lower’ > 0, since mid >= 0).

The third loop invariant must hold because upper’ == upper.

A[mid’] > x: In this case, upper’ == mid’. 0 <= lower’ since lower’ == lower.
By the loop guard, lower < upper. Since lower < upper,mid’ = lower + (upper - lower)/2,
(upper - lower)/2 > 0, and upper’ = mid, we know that lower == lower’ <= mid’ ==

upper’. Thus, lower’ <= upper’. Since mid’ <= upper, upper’ <= upper. That means
that upper’ <= n.

Finally, lower is unchanged, so 0 <= lower still holds.
The second loop invariant must hold because lower’ == lower.

The third loop invariant holds because upper’ == mid’ and A[mid’] > x. Because mid’ < n,
we can access A[upper’] == A[mid’], which is greater than x since we were in this case.

A[mid] == x In this case, we return immediately, so we never check the loop invariants again.

Thus, the loop invariants hold.

Loop invariants and negation of loop condition imply postcondition.

Next, we show that if the loop invariants hold and we exit the loop, the postcondition holds.

We can exit the loop in two ways: either we enter the else branch or lower >= upper.



In the first case, we know A[mid’] == x since we didn't enter any other case and that this array access
is in bounds by the loop invariant, so the postcondition follows.

In the second case, we know lower >= upper. So, by the first loop invariant, we know lower ==
upper.

Now we split into cases based on the second and third loop invariants. Either lower == 0 (and thus
upper == 0), or upper == n (and thus lower == n), or neither of those are true and so A[lower -
1] < x && Alupper] > x.

Case 1. A[lower - 1] < x && Alupper] > x:

We know that A[lower] > x since lower == upper. Since the array is sorted, x would have to
be between indices lower - 1 and lower, which isn't possible. Thus, it isn't in the array.

Case 2. lower == 0 and upper ==
Thus, either n == 0 (so x isn't in the array), or A[upper] == A[lower] == A[0] > x (by loop
invariant 3). Since A is sorted, this means that x is not in A.

Case 3. upper == n && lower == n:
By the second loop invariant, we know thatn == Oor A[n - 1] == A[upper - 1] == A[lower

- 1] < x by the second loop invariant. Since A is sorted, that means x cannot be in A.

Termination. The loop must terminate since the interval between lower and upper is strictly decreasing
in size. If we find the element we're searching for, we return. Otherwise, we eventually get to a point
when lower == upper and we're done.



