
15-122: Principles of Imperative Computation

QuickCheck 3 Solutions

Today, we’ll do the QuickCheck at the beginning of recitation. You will have ten minutes to do this.
Your TA will go over answers at the end. Then follow your TA’s instructions on whether or not to hand
it in

Name:

Andrew ID:

Section (circle one): A B C D E F G H

Simplicio and Sagredo (you) are a couple of 122 students. They are trying to complete an exercise, but
are a bit stuck. Help them out!

Simplicio is trying to recollect the binary search function taught in lecture yesterday, so that he can
understand the details that Salviati is going to go over in recitation today. He’s got most of the outline,
but is missing out on some critical points.

Fill in the blanks and show him that you (Sagredo) are awesome at algorithms like this one.

1 int binsearch(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /∗@ensures (−1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x);
6 @∗/
7 {
8 int lower = 0;
9 int upper = n;

10 while (lower < upper)
11 //@loop_invariant 0 <= lower && lower <= upper && upper <= n;
12 //@loop_invariant lower == 0 || A[lower−1] < x;
13 //@loop_invariant upper == n || A[upper] > x;
14 {
15 int mid = lower + (upper−lower)/2;
16 if (A[mid] < x) {
17 // We can ignore the bottom half of the array now, since we
18 // know that every thing in that half must be less than x
19 lower = mid+1;
20 } else if (A[mid] > x) {
21 // We can ignore the upper half of the array, since we know
22 // that everything in that half must be greater than x
23 upper = mid;

1

24 } else {
25 //@assert A[mid] == x;
26 return mid;
27 }
28 }
29 //@assert lower == upper;
30 return −1;
31 }

Simplicio wrote two functions, mult and main, and included contracts to test their correctness, as part
of his homework:

1 int mult(int x, int y)
2 //@requires x >= 0 && y >= 0;
3 //@ensures \result == x∗y;
4 {
5 int k = x;
6 int n = y;
7 int res = 0;
8 while (n != 0)
9 //@loop_invariant x ∗ y == k ∗ n + res;

10 {
11 if ((k & 1) == 1) res = res + n;
12 k = k >> 1;
13 n = n << 1;
14 }
15 return res;
16 }
17
18 int main()
19 {
20 int a;
21 a = mult(3,4);
22 return a;
23 }

Unfortunately, Simplicio lost his laptop with his only implementation of C0 contract checking. Homework
is due soon and he desperately needs your help to ensure that his contracts are dynamically checked. He
already wrote a function to test boolean expressions, void CHECK(bool b), and he marked the places
in his code where he thinks it might be useful to call CHECK (see next page).

Help Simplicio out by adding explicit contract checking to his program. In the solution box, write a call to
the CHECK function next to the number corresponding to a designated point in Simplicio’s program. For
instance, writing CHECK(B) next to /* 1 */ denotes that the boolean expression B should be checked
at position 1 in the program. Note that since contract checking is expensive, you should only call CHECK
when needed. Some positions may be left blank.

2

1 int mult(int x, int y) {
2
3 /∗ 1 ∗/
4 int k = x; int n = y;
5 int res = 0;
6
7 /∗ 2 ∗/
8 while (n != 0) {
9 /∗ 3 ∗/

10 if ((k & 1) == 1) res = res + n;
11 k = k >> 1;
12 n = n << 1;
13 /∗ 4 ∗/
14 }
15 /∗ 5 ∗/
16 /∗ 6 ∗/
17 return res;
18 /∗ 7 ∗/
19 }
20
21 int main() {
22 int a;
23
24 /∗ 8 ∗/
25 a = mult(3,4);
26
27 /∗ 9 ∗/
28 return a;
29 }

/* 1 */ CHECK((x >= 0) && (y >= 0));

/* 2 */ CHECK(x * y == (k * n + res));

/* 3 */ // do nothing here!

/* 4 */ CHECK(x * y == (k * n + res));

/* 5 */ // do nothing here!

/* 6 */ CHECK(res == x * y);

/* 7 */ // do nothing here!

/* 8 */ // do nothing here

/* 9 */ // do nothing here

Note: it is not wrong, in terms of the relative order of operations, to have the precondition check on line
7 and the postcondition check on line 8, but it makes more sense to leave these checks associated with
the function mult.

Obviously lines 5 and 6 are in the same place in the code, so writing the postcondition in either of these
places is fine. But we don’t actually check the loop invariant after the loop, we check it before the loop

3

guard succeeds or fails (which we can achieve by repeating the loop invariant check on lines 2 and 4).

4

