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15-122: Principles of Imperative Computation

Recitation 4 Josh Zimmerman

Bit maniuplation

So-called bitwise operations operate on integers one bit at a time: they treat all bits in a number as
independent units that don't have anything to do with each other. Here are some tables illustrating the
bitwise operators in Cg :

and or xor (exclusive or) complement

ef1[o _1f1jo ~J1]| O ~J 1] 0

1]1]0 1 10 1 o] 1
0]0 010 01 0

There are also shift operators. They take a number and shift it left (or right) by the specified number of
bits. In Cq , right shifts sign extend: if the first digit was a 1, then 1s will be copied in as we shift. For
shifts, note that it doesn't really make sense to shift by more bits than there are in the number. If you
do so, Cp will give a division by 0 error.

Here are some examples (I'm assuming we're using a 4-bit two's complement system):

0101 0101 0101 0101 1101 0101 1101
& 1100 | 1100 ~ 1100 ~ 0101 >> 1 >> 1 << 1 << 1
0100 1101 1001 1010 0010 1110 1010 1010

Note that left-shifting by & is equivalent to multiplying by 2¥ and that right-shifting by & is equivalent
to dividing by 2 and rounding towards —oo.

Something that's often very useful when working with individual bits is the idea of a mask. Masks are
used to set, get, invert, or do other operations on certain bits of a number with one bitwise operation.

Let's look at some examples of masking so you can get a better idea of how it's used. First, let's write
a function that, given a pixel in the ARGB format, returns the green and blue components of it. Your
solution should use only &.

typedef int pixel;

int greenAndBlue(pixel p)

//@ensures 0 <= \result && \result <= OxXffff;

{

}

Now, let's write a function that gets the alpha and red pixels of a pixel in the ARGB format. Your
solution can use any of the bitwise operators, but will not need all of them.

typedef int pixel;

int alphaAndRed(pixel p)

//@ensures 0 <= \result && \result <= Oxffff;

{



Arrays

Arrays are stored as pointers in Cy. We'll talk more about pointers later in the course, but for now it's
sufficient to know that when you have a variable representing an array, it's stored as a reference, not a
value. (So, if you pass an array to a function and modify it within the function, the caller of the function
will have the modified version.)

1 int addOne(int[] arr, int size)

2 //@requires size == \|length(arr);

31

4 // It’s important to make sure that all array accesses are in bounds.
5 // Ideally, we should be able to prove that they are.

6 for (int i = 0; i < size; i++)

7 //@loop_invariant 0 <= 1 && i <= size;

8 {

9 arr[i] += 1;

10 }

11 // When we take (loop invariant) and not(loop exit condition),
12 // we can easily conclude that i == size, which is often useful
13 }

14

15 int main()

16 {

17 int array_size = 10;

18 int[] a = alloc_array(int, array_size);

19 int[] b = a;

20 //@assert a[0] == 0;

21 //@assert b[0] == 0;

22

23 // We must pass the size of the array to the function because otherwise
24 // the function has no way of verifying that all array accesses are
25 // in bounds.

26 addOne(a, array_size);

27

28 // The function call changes the area in memory that a and b

29 // refer to, so it changes both a and b when we access them.

30 //@assert a[0] == 1;

31 //@assert b[0] == 1;

32}

Here's a slightly more complicated loop: it's a function that calculates the nth Fibonacci number more
efficiently than the naive recursive implementation. Assume that we have a function:

int slow_fib(int n)
//@requires n >= 0;

H

that calculates Fibonacci recursively, and obeys all of the mathematical properties of the Fibonacci
sequence. We don't worry about overflow for now — Fibonacci only uses addition, so we can think of it
as being defined in terms of modular arithmetic.)



1 int fib(int n)
2 //@requires

3 //@ensures \result == slow_fib(n);
4 {

5 int[] F = alloc_array(int, n);
6 if (n> ) {

7 F[O] = 0;

8 1}

9 else {

10 return 0;

11 }

12 if (n> _ ) {

13 F[1] = 1;

14 }

15 else {

16 return 1;

17 }

18 for (int i = 2; i < n; i++)
19 //@loop_invariant ;
20 //@loop_invariant F[i — 1] == slow_fib(i — 1) && F[i — 2] == slow_fib(i — 2);
21 {

22 FIi]l = F[i — 1] + F[i — 21;
23 }

24  return F[n — 1] + F[n — 2];

25 }

Fill in the blanks in the code to show that there are no out of bounds array accesses.

Are the invariants strong enough to prove the postcondition?

Nested for loops

When looping over a two dimensional array or some data structure (like a picture) that's easiest to think
about in two dimensions, nested for loops are very useful. Nested for loops are just for loops inside
other for loops. For an example, see the next page:
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#use <conio>
int[][] multiplication_table(int m, int n) {

int[][]1 A = alloc_array(int[], m);
for (int i = 0; 1 < m; i++)
//@loop_invariant 0 <= i;
{
A[i] = alloc_array(int, n);
for (int j = 0; j < n; j++)
//@loop_invariant 0 <= j;
{
A[il[j] =1 = j;
}
}
return A;
}
int main() {

int[]1[] table multiplication_table(13, 13);
for (int i = 1; i < 13; i++)
//@loop_invariant 0 <= i;
{
for (int j = 1; j < 13; j++)
//@loop_invariant 0 <= j;
{
printint(table[i][j]);
print("\t");
}
print("\n");
}

return 0;

}

It's worth noting that you by no means need a two-dimensional array to do this. You can also treat a
one-dimensional array as two-dimensional by saying that every n elements you start a new row. You'll
be taking advantage of this idea in homework 1.



