15-122: Principles of Imperative Computation

Recitation 4 Solutions

Bit manipulation

Let's look at some examples of masking so you can get a better idea of how it's used. First, let's write a function that, given a pixel in the ARGB format, returns the green and blue components of it. Your solution should use only \&.

```
Solution:
typedef int pixel;
int greenAndBlue(pixel p)
//@ensures 0 <= |result && |result <= 0xffff;
4 {
    // We only want the lower 16 bits of p, so and the others with 0
    // to get rid of them
    return p & 0xffff;
8}
```

Now, let's write a function that gets the alpha and red pixels of a pixel in the ARGB format. Your solution can use any of the bitwise operators, but will not need all of them.

Solution:

```
typedef int pixel;
int alphaAndRed(pixel p)
//@ensures 0 <= |result && | result <= 0xffff;
4 {
    // First, we want to put the top 16 bits in the bottom of the number.
    // Then, we want to get rid of any sign extension that the right shift
    // caused, so we use a mask to get rid of anything above the bottom 16
    // bits
    return (x >> 16) & 0xffff;
}
```


Arrays

Here's a slightly more complicated loop: it's a function that calculates the nth Fibonacci number more efficiently than the naive recursive implementation. Assume that we have a function:

```
int slow_fib(int n)
//@requires n >= 0;
;
```

that calculates Fibonacci recursively, and obeys all of the mathematical properties of the Fibonacci sequence. We don't worry about overflow for now - Fibonacci only uses addition, so we can think of it as being defined in terms of modular arithmetic.)

```
int fib(int n)
//@requires n >= 0;
//@ensures |result == slow_fib(n);
{
    int[] F = alloc_array(int, n);
    if (n > 0) {
        F[0] = 0;
    }
    else {
        return 0;
    }
    if (n > 1) {
        F[1] = 1;
    }
    else {
        return 1;
    }
    for (int i = 2; i < n; i++)
        //@loop_invariant 2 <= i &&i <= n;
        //@loop_invariant }F[i-1] == slow_fib(i - 1) && F[i - 2] == slow_fib(i - 2)
        {
        F[i] = F[i - 1] + F[i - 2];
    }
    return F[n - 1] + F[n - 2];
}
```

Fill in the blanks in the code to show that there are no out of bounds array accesses.
Are the invariants strong enough to prove the postcondition?

Solution:

Array access

The conditions above are necessary and sufficient to show that there are no out of bounds array accesses. Before we reference $\mathrm{F}[0]$ or $\mathrm{F}[1]$, we check with conditional statements (lines 7 and 13) to make sure the accesses are in bounds.

Then, in the loop, our loop invariant guarantees that 2 <= i. Thus, when we access $F[i-2]$, we can be sure that i $-2>=0$, so we won't be attempting to access a negative array element. Further, we know that $\mathrm{i}<\mathrm{n}$ by the loop exit condition and $\mathrm{n}==\backslash$ length (F), so accessing F [i] can't cause any problems. (Neither can accessing F[i - 1]-i - 1 is between i - 2 and i.)
Then, when we access $F[n-1]$ and $F[n-2]$ on line 25 , we know that $n==\backslash$ length (F), and that $n>1$. Since $n>1, n>n-2>=0$, so accessing $n-2$ is fine. Accessing $F[n-1]$ is okay since n $==$ llength (F) and n - 1 must also be positive.

Showing that the postcondition holds.

For the first loop invariant: We know i >= 2 initially since it was initialized to 2 . We know i <= n since if n were less than 2 , we would already have returned.
i' == i + 1 . Since 2 <= i, 2 <= i' as well (assuming no overflow). Further, by the loop guard, i < n. Thus, i' <= n.

For the second loop invariant:
If we assume that slow_fib follows the mathematical definition of Fibonacci correctly, we can show that the loop invariant holds at the start of the loop: slow_fib(1) == $1==\mathrm{F}[1]$ by line 14 and slow_fib (0) $==0=\mathrm{F}[0]$ by line 8.
Then, we can show that it is preserved. $\mathrm{F}[\mathrm{i}]=\mathrm{F}[\mathrm{i}-1]+\mathrm{F}[\mathrm{i}-2]$. By the loop invariant, $\mathrm{F}[\mathrm{i}-$ 1] == slow_fib(i-1) and $F[i-2]==$ slow_fib(i - 2), so $F[i]==$ slow_fib(i). Also, i' $=i+1$ (so i ' $-1==i$). Thus, slow_fib(i' -1) ==F[i, -1]
Further, by the loop invariant, slow_fib(i - 1) == F[i-1], so slow_fib(i' - 2) == F[i' 2].
Finally, at the end of the loop, we know $i==n$ by the loop invariant and the negated loop exit condition. So, we know that $\mathrm{F}[\mathrm{n}-1]+\mathrm{F}[\mathrm{n}-2]==$ slow_fib(n). Then we return that quantity, so we know that our postcondition is correct.

Termination

The loop terminates since i starts out as a number less than n and is incremented by 1 each iteration until it reaches n, which must happen since n and i are finite.

