
15-122 Homework 7 Page 1 of 11

15-122 : Principles of Imperative Computation, Spring 2013

Homework 7 Theory [Update 1]

Due: Tuesday, April 16, 2013, at the beginning of lecture

Name:

Andrew ID:

Recitation:

The written portion of this week’s homework will give you some practice working with issues
in C code, integer types, and tries. You can either type up your solutions or write them
neatly by hand in the spaces provided. You should submit your work in class on the due date
just before lecture or recitation begins. Please remember to staple your written homework
before submission.

Update 1, April 9: Fixed a typo in question 2.

Question Points Score

1 9

2 10

3 6

Total: 25

You must use this printout, include this cover sheet,
and staple the whole thing together before turning it in.
Either type up the assignment using 15122-theory7.tex,

or print this PDF and write your answers neatly by hand.

http://www.cs.cmu.edu/~rjsimmon/15122-s13/hw/15122-theory7.tex


15-122 Homework 7 Page 2 of 11

1. C programming issues

For each of the following problems:

1. state what is wrong with the code and;

2. show how to correct it.

Do not just try to compile it and write down the error message. (Compiling and running
the code may be useful, but all of these examples will compile without error, and some
will even run and produce output, but they all contain conceptual errors that affect
correctness, causing either an exception or undefined behavior at runtime.) Read the
code and explain what is being done wrong, conceptually.

Think about all the ways to incur undefined behavior in C, including accessing unallo-
cated or uninitialized memory, dereferencing NULL, dividing by zero, and signed arith-
metic overflow.

(a)(1) The strlen function returns the length of a standard C string. For example, the
call strlen("foo") will return 3. If the char array passed to strlen is not a valid,
’\0’-terminated C string, strlen will cause undefined behavior.

The strcpy(arr,str) function copies a string of length n (the second argument
str) into a char array that has length strictly greater than n (the first argument
arr). If the array is not big enough, strcpy will cause undefined behavior.

#include <stdio.h>
#include <string.h>

int main() {
char w[strlen("C programming")];
strcpy(w,"C programming");
printf("%s\n", w);
return 0;

}

Solution:



15-122 Homework 7 Page 3 of 11

(b)(1) #include "xalloc.h"

int main() {
int* a = xmalloc(100*sizeof(int));
for (int i=0; i<100; i++) {

if (a[i] == 0) a[i]=i;
else a[i]=0;

}
free(a);
return 0;

}

Solution:

(c)(1) #include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {
char name[strlen("wordpress")];
strcpy(name,"wordpress"+1);
printf("%s\n", name);
free(name);
return 0;

}

Solution:



15-122 Homework 7 Page 4 of 11

(d)(1) #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xalloc.h"

int main() {
char *letter_data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char *a = xcalloc(16, sizeof(char));
for (int i = 0; i < 16; i++) {

a[i] = letter_data[i];
}
printf("The first sixteen letters are: %s\n", a);
free(a);
return 0;

}

Solution:

(e)(1) This code fragment shows a C function that is called from another function. You
can assume the precondition will be satisfied.
#include "contracts.h"
#include "xalloc.h"

// Returns an array of length n that must be freed by the caller
int *square_ar(int n)
{

REQUIRES(n >= 0);
int *A = xcalloc(n, sizeof(int));
for (int i = 0; i < n; i++)

A[i] = i * i;
return A;

}

Solution:



15-122 Homework 7 Page 5 of 11

(f)(1) This code fragment shows a C function that is called from another function.
#include <stdio.h>
#include <string.h>
#include "contracts.h"
#include "xalloc.h"

char *rev_str(char *str) {
char *rev = xcalloc(strlen(str)+1, sizeof(char));
for (int i = strlen(str); i >= 0; i--) {

rev[strlen(str) - i] = str[i];
}
printf("The reversed string is: %s\n", rev);

ENSURES(strlen(rev) == strlen(str));
return rev;

}

Solution:

(g)(1) This code fragment constructs a string of length n with the character c repeated
that many times. The function given here will likely be called from other functions
many times over.
char *strcdup(int n, char c) {

char dup[n+1];
int i;
for (i = 0; i < n; i++)

dup[i] = c;
dup[i] = ’\0’;
char *A = dup;
return A;

}

Solution:



15-122 Homework 7 Page 6 of 11

(h)(1) This code fragment shows a C function that is used inside the library implementa-
tion of queues. Assume that is_queue returns true.
#include <stdlib.h>
#include "contracts.h"
#include "xalloc.h"

int queue_size(queue Q) {
REQUIRES(is_queue(Q));
list *L = xmalloc(sizeof(struct list_node));
int size = 0;
for (L = Q->front; L != Q->back; L = L->next) {

size++;
}
free(L);
return size;

}

Solution:



15-122 Homework 7 Page 7 of 11

(i)(1) This code fragment is intended to free a struct and also print out the contents of
the struct if the second argument also_print is true. You can assume that the
pointer passed to the function points to a heap-allocated memory block and that
the strings do not need to be freed.
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include "xalloc.h"

struct record_header {
int num;
char* name;

};
typedef struct record_header record;

void free_also_print(record *p, bool also_print)
{

REQUIRES(p != NULL);
if (also_print) {

printf("Number: %d \n", p->num);
printf("Name: %s \n", p->name);
free(p);

}
free(p);
return;

}

Solution:



15-122 Homework 7 Page 8 of 11

2. Casting

In C, we frequently have to cast types on the basis on their sign and size. Doing so
can change the bit-patterns and their interpreted values. This question will test your
understanding of how casting works.

Suppose that we are working with the expected implementation-defined implementa-
tion of unsigned and signed (2’s compliment) char (8 bits, one bite), short (16 bits, two
bytes), and int (32 bits, four bytes). Also assume that char is a signed char, though
this is implementation-defined.

(a)(7) We begin with the following declarations:

short x = -6;
unsigned short y = 246;
char z = -2;
unsigned char w = 250;

Fill in the table below. In the third column, always use two hex digits to represent
a char (signed or unsigned), four hex digits to represent a short, and eight hex
digits to represent an int.

C expression Decimal value Hexadecimal

x -6 0xFFFA

(unsigned short)x 65530 0xFFFA

(int)x -6 0xFFFFFFFA

y 246 0x00F6

(short)y

(unsigned int)y

z -2

(unsigned char)z

(int)z

w 250

(char)w

(unsigned short)w



15-122 Homework 7 Page 9 of 11

(b)(3) Say we have a (signed) char array of length 4 and we want to store that array
in a single (4-byte) int by storing the char array {1, 2, 3, 4}, for example, as
0x01020304.
Write a C function that takes a length-4 char array named A and squeezes it into
a single int as outlined above. Do not cast directly between signed and unsigned
types of different sizes, and make sure your solution works for char arrays containing
negative values.
Your solution should be clear and straightforward; convoluted code will lose points.

Solution:
int squeeze(char *A) {

// requires that A have length >= 4

}



15-122 Homework 7 Page 10 of 11

3. Tries and tries again

DO NOT BE CONFUSED by the deceptive appearance of a festive holiday message! As
a ternary search trie, this data structure contains mostly nonsense words:

c	  

h	  

c	  

a	  

r	  
n	  

i	   v	   a	  

l	  

n	  

t	  

a	  

q	  

p	  
y	  

z	  
p	  

a	  

d	  

As in lecture, the dotted lines connect a node to its middle child, and solid lines connect
a node to its left and right children.
(a)(1) What are the first four (4) strings contained in this TST, alphabetically?

Solution:

(b)(1) What are the last four (4) strings contained in this TST, alphabetically?

Solution:

(c)(1) How many strings are there total?

Solution:



15-122 Homework 7 Page 11 of 11

(d)(3) The ternary search trie below contains real words. Add the words adage, on, sage,
ski, slow, and so to this data structure.

Solution:

i	  

a	  

d	  

d	  
g	  

e	  

s	  

k	  

i	  
l	  

d	  
i	  

d	  

a	  

g	  


