
15-122 Homework 6 Page 1 of 11

15-122 : Principles of Imperative Computation, Spring 2013

Homework 6 Theory [UPDATE 1]

Due: Thursday, April 4, 2013, at the beginning of lecture

Name:

Andrew ID:

Recitation:

The written portion of this week’s homework will give you some practice working with heaps,
priority queues, BSTs, and AVL trees, as well as begin our transition to full C. You can either
type up your solutions or write them neatly by hand in the spaces provided. You should
submit your work in class on the due date just before lecture or recitation begins. Please
remember to staple your written homework before submission.

Question Points Score

1 5

2 6

3 6

4 8

5 5

Total: 30

You must use this printout, include this cover sheet,
and staple the whole thing together before turning it in.
Either type up the assignment using 15122-theory6.tex,

or print this PDF and write your answers neatly by hand.

http://www.cs.cmu.edu/~rjsimmon/15122-s13/hw/15122-theory6.tex


15-122 Homework 6 Page 2 of 11

1. Heaps.

We represent heaps, conceptually, as trees. For example, consider the min-heap below.1

(a)(2) Assume a heap is stored in an array as discussed in class where the root is stored
at index 1. Using the above min-heap, at what index is the element with value 32
stored? At what index is its parent stored? At what indices are its left and right
children stored?

Solution:
The value 32 is stored at index ___________.

The parent of value 32 is stored at index ____________.

The left child of value 32 is stored at index ____________.

The right child of value 32 is stored at index ____________.

(b)(1) Suppose we have a non-empty min-heap of integers of size n and we wish to find
the maximum integer in the heap. Describe precisely where the maximum must
be in the min-heap. (You should be able to answer this question with one short
sentence.)

Solution:

1Diagram courtesy of Hamilton (http://hamilton.herokuapp.com)

http://hamilton.herokuapp.com


15-122 Homework 6 Page 3 of 11

(c)(1) Using the following C0 definition for a heap of integers (position 0 in the array is
not used):

struct heap_header {
int limit; // size of the array of integers
int next; // next available array position for an integer
int[] value;

};
typedef struct heap_header* heap;

Write a C0 function find_max that takes a non-empty min-heap and returns the
maximum value. Your code should examine only those cells that could possibly
hold the maximum.

Solution:
int find_max(heap H)
//@requires is_heap(H);
//@requires H->next > 1;
{

}

(d)(1) What is the worst-case runtime complexity in big-O notation of your find_max
function on a non-empty min-heap of n elements from the previous problem?

Solution:



15-122 Homework 6 Page 4 of 11

2. Heaps and BSTs.

Though heaps and binary search trees (BSTs) are very different in terms of their invari-
ants and uses, they are both conceptually represented as trees. This question asks about
three invariants of trees: the BST ordering invariant, the heap shape invariant, and
the heap ordering invariant (for min-heaps, where higher-priority keys are lower integer
values). For the first part of this question, we assume that each element has a single C0
int that is used as both the BST key and the heap priority.

(a)(1) Draw a tree with five elements that is a BST and satisfies the heap shape invariant.

Solution:

(b)(1) Draw a tree with at least four elements that is a BST and satisfies the (min-)heap
ordering invariant.

Solution:



15-122 Homework 6 Page 5 of 11

(c)(1) Why is it not a good idea to have a data structure that enforces both the (min-)heap
ordering invariant and the BST ordering invariant? (Be brief!)

Solution:

(d)(3) Maintaining the BST ordering invariant and the heap invariant on the same set of
values may not be a good idea, but it can be useful to have a tree structure where
each node has two separate values – a key used for the BST ordering invariant and
a priority used for the heap ordering invariant. Such trees are called treaps ; we will
use strings as keys and ints as priorities in this question.
The treap below satisfies the BST ordering invariant, but violates the heap ordering
invariant because of the relationship between the “e”/9 node and its parent. In a
heap, we restore the heap shape invariant using swaps. But in a treap, such a
swap would violate the BST ordering invariant. However, by using the same local
rotations we learned about for AVL trees, it is possible to restore the heap ordering
invariant while preserving the BST ordering invariant.
The heap ordering invariant for the tree below can be restored with two tree rota-
tions. Draw the tree that results from each rotation. You should be drawing two
trees.

Solution:



15-122 Homework 6 Page 6 of 11

3. Priority Queues.
In a priority queue, each element has a priority value which is represented as an
integer. As in the previous question, the lower the integer, the higher the priority.
When we call pq_delmin, we remove the element with the highest priority.

(a) Consider the following ways that we can implement a priority queue. Using big-O
notation, what is the worst-case runtime complexity for each implementation to
perform pq_insert and pq_delmin on a priority queue with n elements?
i.(1) Using an unsorted array.

Solution:

pq_insert:

pq_delmin:

ii.(1) Using a sorted array, where the elements are stored from lowest to highest
priority.

Solution:

pq_insert:

pq_delmin:

iii.(1) Using a heap.

Solution:

pq_insert:

pq_delmin:

(b)(1) Which implementation in (a) is preferable if the number of pq_insert and pq_delmin
operations are relatively balanced? Explain in one sentence.

Solution:



15-122 Homework 6 Page 7 of 11

(c)(1) Under what specific condition does a priority queue behave like a FIFO queue if
it is implemented using a heap? (Warning: if you words like “higher,” “lower,”
“increasing,” or “decreasing” in your answer, be clear whether you are talking about
priority or integer value.)

Solution:

(d)(1) Under what specific condition does a priority queue behave like a LIFO stack if it
is implemented using a heap?

Solution:



15-122 Homework 6 Page 8 of 11

4. AVL Trees.

(a)(4) Draw the AVL trees that result after successively inserting the following keys into
an initially empty tree, in the order shown:

98, 88, 54, 67, 23, 72, 39

Show the tree after each insertion and subsequent re-balancing (if any): the tree
after the first element, 98, is inserted into an empty tree, then the tree after 88 is
inserted into the first tree, and so on for a total of seven trees. Make it clear what
order the trees are in.
Be sure to maintain and restore the BST invariants and the additional balance
invariant required for an AVL tree after each insert.

Solution:



15-122 Homework 6 Page 9 of 11

(b) Recall our definition for the height h of a tree:

The height of a tree is the maximum length of a path from the
root to a leaf. So the empty tree has height 0, the tree with
one node has height 1, and a balanced tree with three nodes has
height 2.

The minimum number of nodes n in a valid AVL tree is related to its height. The
goal of this question is to quantify this relationship.
i.(2) Fill in the table below relating the variables h and n:

h n

0 0

1 1

2 2

3

4

5

ii.(2) Recall that the xth Fibonacci number F (x) is defined by:

F (0) = 0

F (1) = 1

F (x) = F (x− 1) + F (x− 2), x > 1

Using the table in part (i), give an expression for T (h), where T (h) = n. You
may find it useful to use F (n) in your answer, but your answer does not need
to be a closed form expression.

Solution:



15-122 Homework 6 Page 10 of 11

5. Pass by reference

We now begin our transition in 15-122 to full C!

At various points in our C0 programming experience we had to use somewhat awkward
workarounds to deal with functions that need to return more than one value. The address-
of operator (&) in C gives us a new way of dealing with this issue.

(a)(2) Sometimes, a function needs to be able to both 1) signal whether it can return a
result, and 2) return that result if it is able to. One such function that we’ve seen
is peg_solve. When a solution is found, peg_solve returns 1 and modifies the
originally-empty stack passed in with the winning moves, and when no solution is
found peg_solve simply returns the minimum number of pegs seen. Parsing also
fits this pattern. Consider the following code:

bool my_int_parser(char *s, int *i); // Returns true iff parse succeeds

void parseit(char *s) {
REQUIRES(s != NULL);
int *i = xmalloc(sizeof(int));
if (my_int_parser(s, i))

printf("Success: %d.\n", *i);
else

printf("Failure.\n");
free(i);
return;

}

Using the address-of operator, rewrite the body of the parseit function so that it
does not heap-allocate, free, or leak any memory on the heap. You may assume
my_int_parser has been implemented (its prototype is given above).

Solution:
void parseit(char *s) {

REQUIRES(s != NULL);

return;
}



15-122 Homework 6 Page 11 of 11

(b)(3) In both C and C0, multiple values can be ‘returned’ by bundling them in a struct:
struct bundle { int x; int y; };
struct bundle *foo(int x) {

...
struct bundle *B = xmalloc(sizeof(struct bundle));
B->x = e1;
B->y = e2;
return B;

}
int main() {

...
struct bundle *B = foo(e);
int x = B->x;
int y = B->y;
free(B);
...

}
Rewrite the declaration and the last few lines of the function foo, as well as the
snippet of main, to avoid heap-allocating, freeing, or leaking any memory on the
heap. The rest of the code (...) should continue to behave exactly as it did before.

Solution:
_______________ foo(___________________________________________) {

...

________________________________________________________________

________________________________________________________________

________________________________________________________________
}

int main() {
...

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________
...

}


