
15-122 Homework 4 Page 1 of 10

15-122 : Principles of Imperative Computation, Spring 2013

Homework 4 Theory

Due: Thursday, March 7, 2013, at the beginning of lecture

Name:

Andrew ID:

Recitation:

The written portion of this week’s homework will give you some practice working with
amortized analysis, memory management, hashtables, and recursion. You can either type
up your solutions or write them neatly by hand in the spaces provided. You should submit
your work in class on the due date just before lecture or recitation begins. Please remember
to staple your written homework before submission.

Question Points Score

1 5

2 6

3 3

4 6

Total: 20

You must use this printout, include this cover sheet,
and staple the whole thing together before turning it in.
Either type up the assignment using 15122-theory4.tex,

or print this PDF and write your answers neatly by hand.

http://www.cs.cmu.edu/~rjsimmon/15122-s13/hw/15122-theory4.tex


15-122 Homework 4 Page 2 of 10

1. Amortized Analysis.

(a)(1) There are n students {s0, s1, ..., sn−1} who want to get into the Gates-Hillman Center
after 6pm. Unfortunately, 15-122 TAs control the building and charge a toll for
entrance. The toll policy is the following: for some k < n, student si is charged k2

tokens when i ≡ 0 mod k, or zero otherwise. If i is a multiple of k, then student si
is charged k2 tokens. Otherwise, the student enters for free. With this policy, how
much do the students pay altogether?

Solution:

(b)(1) In Soviet Russia, TAs pay you (the TAs really want students at their office hours).
However, Soviet Russia is also communist, so the students must split the money
evenly between themselves. If the 15-122 TAs in Soviet Russia used the same policy
for entering the Gavrilovich-Hashlov Center after 6pm – student si is paid k2 tokens
when i ≡ 0 mod k – how much will each student end up with in the end? (i.e. what
is the amortized cost per student?)

Solution:



15-122 Homework 4 Page 3 of 10

Famous Fred Hacker’s friend, Ned Stacker, loves stacks. He loves them so much
that he implemented a queue using two stacks in the following way:
• A Staqueue has an “in” and an “out” stack.
• To enqueue an element, the element is pushed on the “in” stack.
• To dequeue an element, there are two cases:

– If the “out” stack is non-empty, then we simply pop from the “out” stack.
– Otherwise, we reverse the “in” stack onto the “out” stack by sequentially

popping elements from the “in” stack and pushing them onto the “out”
stack. We then pop from the “out” stack.

A token can pay for the O(1) cost of a stack push or pop; your answers should be
in terms of tokens (not in terms of Big-O notation).

(c)(1) Fred Hacker says that Ned’s implementation is too slow. What is the worst case cost
for dequeuing an element in terms of the number of elements in the staqueue, n?

Solution:

(d)(2) Cheer up Ned by giving and justifying the amortized cost for the queue operations
(enqueue and dequeue). You’ll need to show that it is possible to account for the
eventual cost of a dequeue by paying some of that cost each time you enqueue. (It
may help to consider n calls to dequeue in a staqueue with n elements.)

Solution:



15-122 Homework 4 Page 4 of 10

2. Memory Management.

Recall that pointers in C0 are just addresses in the heap, and the heap is just one portion
of the memory, which we can think of as an enormous array of bytes.

0x50409C	   0x5040A4	   0x5040AC	  

0x5040B0	  0x5040A8	  0x5040A0	  

…	   …	  

For the purposes of this class, we will always think of a byte as containing 8 bits. In the
reference C0 implementation:

• a char is represented using 8 bits (1 byte)

• an int is represented using 32 bits (4 bytes)

• a pointer is represented using 64 bits (8 bytes)

Every time alloc(ty) is called, there is code behind the scenes that reserves a portion
of the heap large enough to store the desired data, initializes that portion of the heap
to default values, and returns the address of the beginning of that portion of the heap.

Consider a stack of characters implemented using a linked list:

struct list_stack {
struct list_node* top;
struct list_node* bottom;

};

struct list_node {
char data;
struct list_node* next;

};

This is the most compact way that C0 could choose to store a struct list_node whose
address – the thing returned from alloc(struct list_node) – was 0x5040A0:

0x50409C	   0x5040A4	   0x5040AC	  

0x5040B0	  0x5040A8	  0x5040A0	  

…	   …	  

data	   next	  



15-122 Homework 4 Page 5 of 10

An array in C0 includes some extra information: every time alloc_array(ty,n) is
called, the default implementation of C0 works behind the scenes to reserve not just
enough space for the n elements of type ty, but also 8 extra bytes: 4 bytes to store an
integer representing how many bytes one array element takes up, and another 4 bytes
to store an integer representing the number of elements in the array (this is how we
implement \length() and check for array bounds errors). If alloc_array(char, 7)
returned 0x5040A0, then this would be the most compact way C0 could choose to store
this array of seven chars:

0x50409C	   0x5040A4	   0x5040AC	  

0x5040B0	  0x5040A8	  0x5040A0	  

…	   …	  

count	  =	  7	   elt_size	  =	  1	   A[2]	   A[6]	  

The actual value of an array is an address (same as for a pointer), so it takes 64 bits (8
bytes) to store the address where an array lives.

Remember that we can also implement a stack of characters with an array:

struct array_stack {
int capacity; /* 0 < capacity */
int size; /* 0 <= size && size <= capacity */
char[] elems; /* \length(elems) == capacity */

};

(a)(1) In this problem, we want to fit our entire heap inside of 1 kB (1024 bytes, or 8192
bits) of continuous memory addresses.
Suppose the lowest address that is part of the heap is 0x504000. What is the highest
address that alloc(char) could conceivably return? What is the highest address
that alloc(int*) could conceivably return? (Give answers in hex.)

Solution:
alloc(char): alloc(int*):

(b)(2) What is the maximum number of characters that can be stored using a list_stack
if we pack everything as tightly as possible into a 1 kB heap? Assume you have a
dummy node. Show your work.

Solution:



15-122 Homework 4 Page 6 of 10

(c)(2) What is the maximum number of characters that can be stored using an array_stack
if we pack everything as tightly as possible into a 1 kB heap? Assume you use every
position in the array (don’t ignore the 0th array element as we did in lecture 9).
Show your work.

Solution:

(d)(1) Because addresses are given in terms of bytes, the C0 implementation obviously
cannot reserve less than a byte at a time. Because of a property called alignment,
C0 will actually reserve more than a byte at a time. In particular, the alloc() and
alloc_array() implementations always reserve multiples of 16 bytes (128 bits), so
that even if we just need 1, 4, or 9 bytes, the allocation will reserve all 16:

0x50409C	   0x5040A4	   0x5040AC	  

0x5040B0	  0x5040A8	  0x5040A0	  

…	   …	  

data	   next	   padding	  (unused)	  

In light of this, how many characters can be stored with a list_stack?

Solution:

How many characters can be stored with an array_stack?

Solution:

(While it doesn’t matter for this particular question, alignment is a bit more complicated
than we have described it here, and influences the positioning of fields like data and next
within a struct. You’ll learn more about alignment in upper-level courses.)



15-122 Homework 4 Page 7 of 10

3. Hash Tables.

In Java, strings are hashed using the following function:

(s[0] ∗ 31n−1 + s[1] ∗ 31n−2 + ...+ s[n− 2] ∗ 311 + s[n− 1] ∗ 310) % m

where s[i] is the ASCII code for the ith character of string s, n is the length of the string,
and m is the hash table size.

(a)(1) If 15122 strings were stored in a hash table of size 4126, what would the load factor
of the table be?

Solution:

(b)(2) Using the hash function above with a table size of 4126, give an example of two
strings that would “collide” and would be stored in the same chain. Note that strings
are case sensitive and string length must be ≥ 3. Briefly describe your reasoning.
(Think of short strings please!)

Solution:



15-122 Homework 4 Page 8 of 10

4. Linked Lists.

We want to find the maximum element in a linked list. The recursive data structure of
a linked list, as seen in lecture, is defined as:

struct list_node {
elem data;
struct list_node* next;

};
typedef struct list_node list;

The client provides a helper function elem_compare. Its signature is:

int elem_compare(elem a, elem b)
//@ensures -1 <= \result && \result <= 1;

;

and it returns -1 if a is less than b, 0 if a is equal to b, and 1 if a is greater than b.

We’ve also written a function leq. Its signature is:

bool leq(list* start, list* end, elem e)
//@requires is_segment(start, end);

;

and it returns true if every node in the list from start (inclusive) to end (exclusive) is
less than or equal to e. We treat the end list node as a dummy node, as we do in lecture,
and this dummy node may not even contain valid data.

You can also use the is_segment function described in lecture. Its signature is:

bool is_segment(list* start, list* end);

and it returns true if start and end delineate a valid list segment. Unlike the is_segment
from lecture, this is_segment function has no precondition: it will just return false if
start or end are NULL.



15-122 Homework 4 Page 9 of 10

(a)(2) Finish the find_max function. It takes in two pointers, which should delineate a
valid list segment, and returns the maximum element in the list segment. You will
need to provide one more precondition in order for line 7 to make sense, and the
loop invariant you give on line 11 should be true initially, should be preserved by
every iteration of the loop, and should be strong enough to prove the postcondition.

Solution:
/* 1 */ elem find_max(list* start, list* end)

/* 2 */ //@requires is_segment(start, end);

/* 3 */ //@requires ________________________________________;

/* 4 */ //@ensures leq(start, end, \result);

/* 5 */ {

/* 6 */ list* curr = start;

/* 7 */ elem max = _______________________________________;

/* 8 */ while (___________________________________________)

/* 9 */ //@loop_invariant is_segment(start, curr);

/* 10 */ //@loop_invariant is_segment(curr, end);

/* 11 */ //@loop_invariant ______________________________;

/* 12 */ {

/* 13 */ curr = _______________________________________;

/* 14 */ if (________________________________________) {

/* 15 */ ____________________________________________;

/* 16 */ }

/* 17 */ }

/* 18 */ return max;

/* 19 */ }



15-122 Homework 4 Page 10 of 10

(b)(2) Prove that the first two loop invariants, on lines 9 and 10, are valid loop invariants.
(They are true initially and are preserved by every iteration of the loop.)
Remember that, when discussing preservation of the loop invariant, you want to
account for curr (the value in curr before the loop guard is checked and returns
true) and curr ′ (the value in curr just before the loop guard is next checked).

Solution:

(c)(2) Prove that every pointer dereference you make is safe.

Solution:


