
15-122 Homework 1 Page 1 of 6

15-122 : Principles of Imperative Computation, Spring 2013

Homework 1 Theory

Due: Tuesday, February 5, 2013, at the beginning of lecture

Name:

Andrew ID:

Recitation:

The written portion of this week’s homework will give you some practice working with the
binary representation of integers and reasoning with invariants. You are strongly advised to
review the C0 language reference guide (available at http://c0.typesafety.net/) for details on
integer manipulation.

Question Points Score

1 8

2 7

Total: 15

You must use this printout, include this cover sheet,

and staple the whole thing together before turning it in.

Either type up the assignment using 15122-theory1.tex,

or print this PDF and write your answers neatly by hand.

http://www.cs.cmu.edu/~rjsimmon/15122-s13/hw/15122-theory1.tex


15-122 Homework 1 Page 2 of 6

1. Basics of C0

(a)(3) Let x be an int in the C0 language. Express the following operations in C0 using
only constants and the bitwise operators (&, |, ^, ~, <<, >>). Your answers should
account for the fact that C0 uses 32-bit integers.

i. Set a equal to x, where the alpha and green components have both been set to
0, with the red and blue components left unchanged. (eg 0xAB12CE34 becomes
0x00120034; see Section 1.1 of the Programming portion for more info)

Solution:

ii. Set b equal to x with its middle 16 bits flipped (0 =⇒ 1 and 1 =⇒ 0) (eg
0xAB00FF12 becomes 0xABFF0012)

Solution:

iii. Set c equal to x with its highest 8 bits set to 1 and with its lowest 8 bits set to
0. (eg 0xAB12CE34 becomes 0xFF12CE00)

Solution:

iv. Set d equal to x with its highest and lowest 16 bits swapped (eg 0x1234ABCD

becomes 0xABCD1234)

Solution:



15-122 Homework 1 Page 3 of 6

(b)(1) Are the following two bool expressions equivalent in C0, assuming x and y are of
type int? Explain your answer.

(x%y < 122) && (y != 0) (y != 0) && (x%y < 122)

Solution:

(c)(1) Is the following code a valid way to check if a + b + c overflows? If not, give values
for a, b and c such that the check will return an incorrect result:

bool safe_add(int a, int b, int c)

{

if (a > 0 && b > 0 && c > 0 && a + b + c < 0) return false;

if (a < 0 && b < 0 && c < 0 && a + b + c > 0) return false;

return true;

}

Solution:

(d)(3) For each of the following statements, determine whether the statement is true or
false in C0. If it is true, explain why. If it is false, give a counterexample to illustrate
why.

i. For every int x and y, x < y is equivalent to x− y < 0

Solution:

ii. For every int x: x >> 1 is equivalent to x/2.

Solution:

iii. For every int x, y, and z: (x + y) ∗ z is equivalent to z ∗ y + x ∗ z.

Solution:



15-122 Homework 1 Page 4 of 6

2. Reasoning with Invariants

The Pell sequence is shown below:

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ...

Each integer in in the sequence is the sum of 2in−1 and in−2. Consider the following
implementation for fastpell that returns the nth Pell number (the body of the loop is
not shown).

/* 1 */ int PELL(int n)

/* 2 */ //@requires n >= 1;

/* 3 */ {

/* 4 */ if (n <= 1) return 0;

/* 5 */ else if (n == 2) return 1;

/* 6 */ else return 2 * PELL(n-1) + PELL(n-2);

/* 7 */ }

/* 8 */

/* 9 */ int fastpell(int n)

/* 10 */ //@requires n >= 1;

/* 11 */ //@ensures \result == PELL(n);

/* 12 */ {

/* 13 */ if (n <= 1) return 0;

/* 14 */ if (n == 2) return 1;

/* 15 */ int i = 1;

/* 16 */ int j = 0;

/* 17 */ int k = 2;

/* 18 */ int x = 3;

/* 19 */ while (x < n)

/* 20 */ //@loop_invariant 3 <= x && x <= n;

/* 21 */ //@loop_invariant i == PELL(x-1);

/* 22 */ //@loop_invariant j == PELL(x-2);

/* 23 */ //@loop_invariant k == 2*i+j;

/* 24 */ {

/* 25 */ // LOOP BODY NOT SHOWN

/* 26 */ }

/* 27 */ return k;

/* 28 */ }



15-122 Homework 1 Page 5 of 6

In this problem, we will reason about the correctness of the fastpell function when
the argument n is greater than or equal to 3, and we will complete the implementation
based on this reasoning.

To completely reason about the correctness of fastpell, also need to point out that
fastpell(1) == PELL(1) and that fastpell(2) == PELL(2). This is straightforward,
because no loops are involved.

(a)(2) Show that each loop invariant is true just before the loop condition is tested for the
first time, using the precondition and any initialization before the loop condition.

Solution:

• 3 <= x && x <= n – We know x is 3 by line , so 3 <= x is true

because 3 <= 3.

Because x is 3, to show x <= n we just need to show 3 <= n before the
loop condition is tested for the first time. We know n is greater than 1 by

line and we know n is not 2 by line , so it follows that n is

greater than or equal to 3.

• i == PELL(x-1) – Because x is 3 before the loop condition is tested for

the first time, PELL(x-1) is and therefore this loop invariant is

initially justified by line .

• j == PELL(x-2) – Because x is 3 before the loop condition is tested for

the first time, PELL(x-2) is and therefore this loop invariant is

initially justified by line .

• k == 2*i+j – Justified by lines .



15-122 Homework 1 Page 6 of 6

(b)(2) Show that the loop invariants and the negated loop guard at termination imply the
postcondition.

Solution:

We know x <= n by line , and we know x >= n by line , so this

implies that x equals n.

The result value is the value of k after the loop, so to show that that the
postcondition holds when n >= 3, it suffices to show that, after the loop, k

equals PELL(x).

• k = 2*i + j (line )

• 2*i + j = 2*PELL(x-1) + j (line )

• 2*PELL(x-1) + j = 2*PELL(x-1) + PELL(x-2) (line )

• 2*PELL(x-1) + PELL(x-2) = PELL(x) (PELL def., x >= 3 by line )

• k = PELL(x) (transitivity, the four preceding facts)

(c)(2) Based on the given loop invariant, write the body of the loop. DO NOT use the
specification function PELL().

Solution:

{

j =

i =

k =

x =

}

(d)(1) Explain why the function must terminate with the loop you gave in 2(c).

Solution:


