
15-122 Homework 8 Page 1 of 16

15-122: Principles of Imperative Computation, Spring 2013

Homework 8 Programming: The C0VM

Due: Thursday, May 2, 2013 by 23:59

In this assignment you will implement a virtual machine for C0, the C0VM. It has been
influenced by the Java Virtual Machine (JVM) and the LLVM, a low-level virtual machine
for compiler backends. We kept its definition much simpler than the JVM, following the
design of C0. Bytecode verification, one of the cornerstones of the JVM design, fell victim
to this simplification so in this way the machine bears a closer resemblance to the LLVM.
Nevertheless, it is a fully functional design and should be able to execute arbitrary C0 code.

The purpose of this assignment is to give you practice in writing C programs in the kind of
application where C is indeed often used in practice. C is appropriate here because a virtual
machine has to perform some low-level data and memory manipulation that is difficult to
make simultaneously efficient and safe in a higher-level language. It should also help you
gain a deeper understanding how C0 (and, by extension, C) programs are executed.

The C0VM is defined in stages, and we have test programs which exercise only part of
the specification. We strongly recommend that you construct your implementation following
these stages and debug and test each stage before moving on to the next. Each part has its
own challenges, but each part should be relatively small and self-contained.

This document describes the structure of the C0VM first, then the instruction set (byte-
codes) for the C0VM, and then the file format for a C0 program in bytecode form. After
this, the document will describe the tasks you need to perform, step by step. Read this
document very carefully as you prepare to do your work.

Compiling and running. You will compile and run your code using the standard gcc
compiler and the provided Makefile on Andrew Linux. You should compile and run with

% make c0vmd # or make c0vm
% ./c0vmd test.bc0 # or ./c0vm test.bc0

Submitting. Once you’ve completed some files, you can submit the c0vm.c file from the
terminal on Andrew Linux along with (optionally) any tests you have written:

% handin hw8 c0vm.c tests/*.bc0 tests/*.c0

Grading. You may submit your assignment up to 25 times without penalty, with the
expectation that you will test your own code as described in Section 4.1. More submissions
are permitted, but each submission over this threshold will incur a one-point penalty.

15-122 Homework 8 Page 2 of 16

1 The Structure of the C0VM
Compiled code to be executed by the C0 virtual machine is represented in a byte code format,
typically stored in a file ending in extension .bc0 which we call the bytecode file. This file
contains numerical and string constants as well as byte code for the functions defined in the
C0 source. The precise form of this file is specified in Section 3.

1.1 Types

C0 has so-called small types int, bool, char, string, t[], and t*. Values of these types
can be passed to or from functions and held in variables. We think of the small types as
constituting two classes: the primitive types int, bool, and char and the reference types
string, t[] and t*. All primitive types are conflated in the C0VM and denoted by w32,
indicating a 32 bit word. Values of primitive types are denoted by x, i, or n. We also conflate
all reference types and write *. Values of reference type are denoted by a for address. An
address uses either 32 bits or 64 bits. On the Linux machines you use, it will be 64 bits.

In addition C0 has large types struct s which cannot be passed directly, but must be
stored in memory. When the C0VM executes a program, it, too, stores values of large type
on its heap and refers to them by their address. Calculations of how to access struct fields
are performed statically by the compiler, which computes proper offsets for each access. In
addition, arrays (referenced by values of type t[]), memory cells (referenced by values of
type t*) and strings (referenced by values of type string) are stored on the heap.

1.2 Runtime Data Areas

The C0VM defines several data areas that are used during the execution of a program.

1.2.1 The Program Counter

In Clac, the program instructions were strings, and they were stored in a queue of strings. In
the C0VM, instructions are stored in an array of (unsigned) bytes (ubyte *P). The program
counter pc holds the address of the program instruction currently being executed. Unless
a nonlocal transfer of control occurs (goto, conditional branch, function call or return) it is
incremented by the number of bytes in the current instruction before the next instruction is
fetched and interpreted.

1.2.2 The Call Stack

The C0VM has a call stack consisting of frames, each one containing local variables, a local
operand stack, and a return address. The call stack grows when a function is called and
shrinks when a function returns, deallocating the frame during the return.

1.2.3 The Operand Stack

The C0VM is a stack machine, similar in design to Clac and the JVM. This means arith-
metic operations and other instructions pop their operands from an operand stack and push

15-122 Homework 8 Page 3 of 16

their result back onto the operand stack. This is in contrast with register machines where
instructions such as arithmetic operations act on a finite set of registers.

1.2.4 The Heap

At runtime, the C0 heap contains C0 strings, C0 arrays (t[]) and C0 cells (t*). C0 arrays
have to store size information so that dynamic array bounds checks can be performed. It is
recommended to use the C heap to implement the C0 heap, that is, allocate strings, arrays,
and cells directly using calls to malloc and calloc or their null-checking variants xmalloc
and xcalloc as defined earlier in this course.

Since C0 is designed as a garbage-collected language, you will not be able to free space
allocated on behalf of C0 unless you are willing to implement (or use) a garbage collector.
We do not view this as a memory leak of the C0VM implementation. On the other hand,
temporary data structures required for the C0VM’s own operation should be properly freed.

1.2.5 Constant Pools

Numerical constants requiring more than 8 bits and all string constants occurring in the
program will be allocated in constant pools, called the integer pool and the string pool. They
never change during program execution.

1.2.6 Function Pools

Functions, either C0 functions defined in a source file or library functions, are kept in pools
called the function pool and the native pool, respectively. Functions in the function pool are
stored with their bytecode instructions, while functions in the native pool store an index into
a table of C function pointers that the C0VM implementation can dereference and invoke.

1.3 Frames

A frame stores data and partial results during the execution of a function body. It holds
a return address, which should be the next instruction in the calling function, an array of
local variables denoted by V [0], . . . , V [num_vars − 1], and an operand stack for computing
expression values. At any point during the execution there is a current frame as well as a
calling frame, where the latter is restored when a function returns to its caller.

Since values of small type may occupy 4 bytes or 8 bytes, the data structures implementing
frames, including the array of local variables and the operand stack, allocate 8 bytes for each
data value, whether of primitive type or reference type. From the C perspective, things are
simplest if these are of type void*, but to clarify intent, we create a type alias c0_value,
defined to be void*, for arbitrary C0 values. This strategy requires us to be able to cast
ints to pointers and vice versa without loss of information. The C99 standard leaves this
behavior implementation-defined, but the Andrew version of gcc implements such casts. We
define an inline function VAL(x) to cast an integer x to a c0_value, and a converse INT(p)
to cast a pointer p to a 32-bit signed integer (an int32_t). For the latter to work, p must
have been created with a VAL(x) cast, otherwise the result is unpredictable except for NULL
(which returns 0). So we always have INT(VAL(x)) == x for any integer x.

15-122 Homework 8 Page 4 of 16

The main function we have provided (see the file c0vm_main.c) performs some simple
tests to verify that casts between void* and int do not lose information. If any of these
tests fail, C0VM will abort with an appropriate error message.

1.4 Runtime Errors

In order to fully capture the behavior of C0 programs, you must correctly issue errors for
things like dereferencing NULL, indexing into an array outside of its bounds, and dividing by
zero. Check the C0 Language Reference for details on what kinds of errors you must handle,
and then use the following provided functions (defined in c0vm_abort.h and c0vm_abort.c)
to issue appropriate error messages:

void c0_user_error(char *err); // for calls to error() from C0
void c0_assertion_failure(char *err); // for failled assertions from C0
void c0_memory_error(char *err); // for memory-related errors
void c0_arith_error(char *err); // for arithmetic-related errors

For unexpected situations that arise while executing bytecode, situations which could indi-
cate a bug in your VM, you may use the standard C library functions abort or assert to
abort your program. See Section 4.3 for more details on this distinction.

2 Instruction Set
We group the instructions by type, in order of increasing complexity from the implementation
point of view. We recommend implementing them in order and aborting with an appropriate
message when an unimplemented instruction is encountered.

2.1 Stack Manipulation

There are three instructions for direct stack manipulation without regard to types.

0x59 dup S, v -> S, v, v
0x57 pop S, v -> S
0x5F swap S, v1, v2 -> S, v2, v1

2.2 Arithmetic Instructions

Arithmetic operations in C0 are defined using modular arithmetic based on a two’s comple-
ment signed representation. This does not match your implementation language (C) very
well, where the result of signed arithmetic overflow is undefined. On the other hand, un-
signed arithmetic overflow is defined to be modular arithmetic. We therefore recommend
casting int32_t as uint32_t, perform unsigned arithmetic, then casting back. This does
not do everything that is needed to ensure C0 compliance, but it goes a long way. We rec-
ommend a careful reading of the arithmetic operations in the C0 Reference, as well as the
file signed-casting.c which demos some of C’s casting behavior.

http://c0.typesafety.net/doc/c0-reference.pdf
http://www.cs.cmu.edu/~fp/courses/15122-f12/lectures/23-c0vm/signed-casting.c

15-122 Homework 8 Page 5 of 16

For this implementation strategy to be correct, it is important to verify that our C
environment does indeed use a two’s complement representation and that the C type of int
has 32 bits. The provided main function (see the file c0vm_main.c) performs these checks
before starting the abstract machine and aborts the execution if necessary.

In the instruction table below (and for subsequent tables), we use w32 for the type of
primitive values and * for the type of reference values. Each line has an opcode in hex
notation, followed by the operation mnemonic, followed by the effect of the operation, first
on the stack, then any other effect.

0x60 iadd S, x:w32, y:w32 -> S, x+y:w32
0x7E iand S, x:w32, y:w32 -> S, x&y:w32
0x6C idiv S, x:w32, y:w32 -> S, x/y:w32
0x68 imul S, x:w32, y:w32 -> S, x*y:w32
0x80 ior S, x:w32, y:w32 -> S, x|y:w32
0x70 irem S, x:w32, y:w32 -> S, x%y:w32
0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32
0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32
0x64 isub S, x:w32, y:w32 -> S, x-y:w32
0x82 ixor S, x:w32, y:w32 -> S, x^y:w32

idiv, irem, ishr, and ishr can raise exceptions (use the provided function c0_arith_error
to generate a message). Please refer to the C0 language specification for important details.

We have omitted negation -x, which the compiler can simulate with 0-x, and bitwise
negation ~x, which the compiler can simulate with x^(-1).

2.3 Local Variables

We can move data generically between local variables and the stack, because all primitive
types can fit into the size of a reference type (c0_value, which is defined as void*, is 8 bytes
on 64-bit systems). The instruction operand <i> is one byte following the opcode 0x15 or
0x36 in the instruction stream. Because this is the only way to access a local variable, each
function can have at most 256 local variables, which includes the function arguments.

0x15 vload <i> S -> S, v (v = V[i])
0x36 vstore <i> S, v -> S (V[i] = v)

2.4 Constants

We can push constants onto the operand stack. There are three different forms: (1) a
constant null which is directly coded into the instruction, (2) a small signed (byte-sized)
constant which is an instruction operand and must be sign-extended to 32 bits, and (3)
a constant stored in the constant pool. For the latter, we distinguish constants of primitive
type from those of reference type because they are stored in different pools.

The two constant loading instructions ildc and aldc take two unsigned bytes as operands,
which must be combined into an unsigned integer index for the appropriate constant pool.
The integer pool stores the constants directly, and the index given to ildc is an index into

15-122 Homework 8 Page 6 of 16

the integer pool. The string pool is one large array of character strings, each terminated by
’\0’. The index given to aldc indicates the position of the first character; its address is
therefore of type char* in C and understood by C as a string.

0x01 aconst_null S -> S, null:*
0x10 bipush S -> S, x:w32 (x = (w32)b, sign extended)
0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])
0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])

2.5 Control Flow

Each instruction implicitly increments the program counter by the number of bytes making
up the instruction. Control flow instructions change this by jumping to another instruction
under certain conditions. The addressing is relative to the address of the branch instruction.
The offset is a signed 16 bit integer that is given as a two-byte operand to the instruction.
It must be signed so we can branch backwards in the program. Note that if_cmpeq and
if_cmpne can be used to compare either integers or pointers for equality or inequality,
whereas the other comparisons only make sense on integers. The nop “no-op” instruction has
no effect.

0x00 nop S -> S

0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)
0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)
0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)
0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)

0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))

0xBF athrow S, a:* -> S (c0_user_error(a))
0xCF assert S, x:w32, a:* -> S (c0_assertion_failure(a) if x == 0)

2.6 Function Calls and Returns

Function calls come in two forms: invoking a C0 function defined in the same bytecode file
and invoking a library function defined in C. In either case, generic arguments v1 through vn
are passed on the operand stack and consumed. The C0VM implementation must guarantee
that the result v is pushed onto the stack when the function returns. For functions returning
void, a dummy value is pushed onto the operand stack to provide a uniform interface to
functions.

Function information is stored in the function pool or native pool, both of which are
addressed by the instruction operand consisting of two bytes, which must be reconstituted
into an unsigned 16 bit quantity indexing into the appropriate pool.

15-122 Homework 8 Page 7 of 16

0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v
(function_pool[c1<<8|c2] = g, g(v1,...,vn) = v)

0xB0 return ., v -> . (return v to caller)

When invoking a C0 function (instruction invokestatic) we have to preserve the pro-
gram counter pc as a return address, the current local variable array V and the current
operand stack S. This is the information in a frame which is pushed onto a global call stack.
Then we set the pc to the beginning of the code for the called function g, allocate a new
array of local variables, and initialize it with the function arguments from the old operand
stack. We also create a new empty operand stack for use in the called function.

When processing a return instruction we restore the pc, the local variable array V and
the operand stack S from the last frame on the call stack. We also need to arrange that the
return value is popped from the current operand stack and pushed onto the operand stack
of the frame we return to. Some temporary data structures may need to be deallocated at
this point.

The main function always has index 0 in the function pool and takes 0 arguments. After
reading the file, setting up appropriate data structures, etc., your C0VM implementation
should start executing byte code at the beginning of this function and at the end print the
final value.

In this assignment, you should use two instances of the abstract data type of stacks,
one holding frames (the call stack) the other holding operands (the operand stack).1 Each
of them is used just using pushes and pops, as the stack interface dictates. Remember,
your stacks or arrays will have to share data of different types, namely primitive types and
reference types.

A reasonable mapping to C implementation types would be int32_t for primitive types
and void* for reference types, implementing respectively the types w32 and * in the descrip-
tion of the instructions. This allows you to store all C0VM values of small type as type
c0_value (i.e., void *) and cast them to the appropriate type for the operations you need
to perform on them and to cast the result back when finished.

2.7 Native Function Calls

Native function calls have the same form as C0 function calls, but the two-byte instruction
argument indexes into the native pool, rather than the function pool.

0xB7 invokenative <c1,c2> S, v1, v2, ..., vn -> S, v
1There are a number of other plausible implementation paths for the two stacks. One possibility is inspired

by the system call stack for languages such as C. In this strategy there is one global array storing return
addresses, local variables, and (in the case of the C0VM) also an area to use as the operand stack. This
implementation would not use our abstract datatype of stacks, but implement the stack as an array with a
so-called stack pointer which is the current top of the stack. Of course, it is not really treated exactly like an
abstract stack, because the access to local variables violates the pure stack discipline. Another possibility is
to have a single operand stack, shared throughout the execution, rather than local ones for each frame. This
is possible because the C0VM specification requires that when a function returns, its operand stack must be
empty.

15-122 Homework 8 Page 8 of 16

The value native_pool[c1<<8|c2] is an index i into a separate runtime structure, the
native_function_table. From there you retrieve the address of a function g which has
type

c0_value (*g)(c0_value*);

The type c0_value* should be read as an array of pointers of type c0_value, which indicates
generic data. It also returns a value of generic type. In order to call this function you have to
construct an array of length n and store arguments v1 through vn at indices 0 through n−1,
and then invoke the function g on this array. The result has to be pushed back onto the
operand stack.

Native function calls do not therefore involve explicitly managed stack frames. Of course,
your abstract machine implementation is using the system stack, so when you call the library
function, the library function also uses the system stack, rather than any stack managed
explicitly by your virtual machine.

The mapping between native library functions and their indices into the native function
table is given as a series of NATIVE_* macros in the file c0vm_c0ffi.h.

2.8 Memory Allocation, Load, and Store

Besides function calls, the trickiest aspect of the C0VM implementation is the management
of the C0 runtime heap. There are two basic options. One is to allocate on the C runtime
heap (that is available to your C0VM implementation as it runs) one very large array and
perform C0 allocations inside this array. The type of references would then be int, values
denoting array indices. Alternatively, you can satisfy each C0 allocation request separately
by allocating a sufficient amount of space on the C runtime heap, using C pointers to imple-
ment C0VM references. The latter option is advantageous for the purpose of calling native
functions because the C runtime heap is shared between the running C0VM implementation
and the C0 bytecode program that it executes. In either case, the implementation of alloca-
tion must take care to initialize all memory requested by C0 to all zeros, as required by the
semantics.

0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)

The new <s> instruction allocates memory for holding data of size s, and returns the
address of that memory. Here s is an unsigned byte, expressing the memory size in bytes.
The data size is computed statically by the C0 compiler. For example, the C0 expression
alloc(int) would translate to new 4, while alloc(struct b) would translate to new n,
where n is the size of a struct b in memory in bytes, which is always known at compile
time.

0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated)
0xBE arraylength S, a:* -> S, n:w32 (n = \length(a))

The newarray <s> instruction allocates memory for an array, each of whose elements
has size s. The number n of elements to allocate is passed on the stack since it cannot in

15-122 Homework 8 Page 9 of 16

general be known at compile time. Unlike C, in C0 array bounds must be checked on accesses
to the array, so an array must store its length. It can be retrieved with the arraylength
instruction, which is passed an argument on the operand stack which must be a reference to
an array.

The layout for arrays must be specified precisely so that native library functions can
reliably convert between C0 and the native format. The first 4 bytes contain the number
of elements, the next 4 bytes contain the size of each element, followed by the “raw” array,
whose size is n ∗ s bytes. See the text file C_IDIOMS.txt for the C idiom to achieve this kind
of layout.

Accessing memory is decomposed into address arithmetic and loading from or storing to
a computed address. Address arithmetic comes in two forms. We can add a field offset to
access a field of a struct, written below as a + f where f , the instruction operand, is an
unsigned one-byte quantity. The offset is computed by the C0 compiler. The address a may
be NULL, and if this is the case, then you must raise a memory error by calling the provided
function c0_memory_error.

0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset)
0x63 aadds S, a:*, i:w32 -> S, (a+s*i):*

(a != NULL, 0 <= i < \length(a))

The second form aadds computes the address of an array element. The operand a on the
stack must be the address of an array, and the operand i must be a valid index for this array.
The address a is guaranteed to be non-NULL by the C0 type system. You should assert this
fact. The C0VM must issue an error message and abort if i is not a valid index, which can
be determined from the stored array length; use the provided function c0_memory_error
to issue this error. We then use the size s stored with the array to compute the address of
the ith element. In your implementation you will have to be careful to account for additional
8 bytes stored for each array in order to obtain the correct address. Note that one aadds
instruction is necessary for every array access, even if we access the element at index 0.

Once we have calculated an address that holds a value of small type (either a primitive
type or a reference type), we can load it from memory or store something at the given
location. For primitive types, we use the imload instruction and mstore instructions, for
reference types the amload and amstore instructions.

0x2E imload S, a:* -> S, x:w32 (x = *a, a != NULL, load 4 bytes)
0x2F amload S, a:* -> S, b:* (b = *a, a != NULL, load address)
0x4E imstore S, a:*, x:w32 -> S (*a = x, a != NULL, store 4 bytes)
0x4F amstore S, a:*, b:* -> S (*a = b, a != NULL, store address)

For character arrays, we also need to be able to load an individual byte and cast it as a
value of C0VM type w32, zero-extending it. Zero-extension works here because the original
C0 type of such a value must have been char whose range is limited to 7 bits. This is done
by the cmload instruction; cmstore performs the opposite, masking the given value of type
w32 to 7 bits.

0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)
0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)

15-122 Homework 8 Page 10 of 16

As for the address arithmetic instructions you must check that the address a of a load or
store instruction is non-NULL and raise a memory error if a is NULL.

3 Bytecode File Format
The bytecode file, usually with extension .bc0, is produced by the cc0 compiler when invoked
with the -b or --bytecode flag. In order to allow you to easily read bytecode, and also write
your own bytecode, the binary file is coded in hexadecimal form, where two-digit bytes are
separated by whitespace. In addition, the file may contain comments starting with ‘#’ and
extending to the end of the line.

We describe the format as pseudo-structs, where we use the types described below. For
multi-byte types, each byte is given separately by two hexadecimal digits, with the most
significant byte first.

u4 - 4 byte unsigned integer
u2 - 2 byte unsigned integer
u1 - 1 byte unsigned integer
i4 - 4 byte signed (two’s complement) integer
fi - struct function_info, defined below
ni - struct native_info, defined below

The size of some arrays is variable, depending on earlier fields. These are only arrays concep-
tually, of course. In the file, all the information is just stored as sequences of bytes separated
by whitespace.

struct bc0_file {
u4 magic; # magic number, always 0xc0c0ffee
u2 version+arch; # version number and architecture
u2 int_pool_count; # number of integer constants
i4 int_pool[int_pool_count]; # integer constants
u2 string_pool_count; # number of characters in string pool
u1 string_pool[string_pool_count]; # adjacent ’\0’-terminated strings
u2 function_count; # number of functions
fi function_pool[function_count]; # function info
u2 native_count; # number of native (library) functions
ni native_pool[native_count]; # native function info

};

struct function_info {
u2 num_args; # number of arguments, V[0..num_args)
u2 num_vars; # number of variables, V[0..num_vars)
u2 code_length; # number of bytes of bytecode
u1 code[code_length]; # bytecode

};

15-122 Homework 8 Page 11 of 16

struct native_info {
u2 num_args; # number of arguments, V[0..num_args)
u2 function_table_index; # index into table of library functions

};

We are providing code that reads bytecode files and marshals the information into similar
internal C structures.

4 Programming Tasks and Coding Advice
There are many complexities in implementing a virtual machine, especially one that is rich
enough so it can execute all of C0! Fortunately, some of the complexities (such as parsing
the bytecode file) are taken care of by code we are providing, but others remain. You will
complete the code in c0vm.c.

The following are suggested strategies to help you work effectively throughout this project.

4.1 Testing

We have provided a few test cases in tests/, but it is more effective to write your own.
Write a small file, say test.c0 and the compile it with cc0 -b test.c0, which will create a
bytecode file test.bc0. Then run it with ./c0vm test.bc0. Compare your answers with the
ones you get with cc0 -o mytest mytest.c0 and ./mytest. The script testvm automates
this process:

% ./testvm tests/iadd.c0
Files iadd.c0.c0out and iadd.c0.bc0out are identical

4.2 Incremental Implementation

Implement a subset of the instruction set and test your C0VM implementation on code that
only uses the subset. Generate some test cases using cc0 -b from simple C0 sources, or use
some of the supplied examples that use limited instructions. You should recognize instruc-
tions that are valid but not in your subset and give a “not yet implemented ” message and
returning rather than aborting in the same way as for other errors. Test one stage thoroughly
before moving on. After extending the machine, first make sure the old, simple examples
still run correctly, a process called regression testing. The stages follow our discussion of the
instruction set:

Task 1 (5 pts) Initialize the following variables correctly in the execute function in the
c0vm.c file: S, P, pc.

Task 2 (25 pts) [2.1,2.2] Add code to handle arithmetic instructions, plus bipush, swap,
and return. (Note: The return instruction need only simulate returning from main
for now.) C0 programs with only a main function returning an expression made of
small constants can be used to test these capabilities, e.g.,

15-122 Homework 8 Page 12 of 16

int main() {
return 15 * ((1<<10) - 24) + 122;

}

Task 3 (15 pts) [2.3,2.4] Add code to deal with local variables and constants; you’ll need
to initialize the variable V to something better than NULL. C0 source files contain-
ing straight-line code using variables and large constants can be used to test these
capabilities, e.g.,:

int main() {
int x = 15122;
int y = x * x;
return y;

}

Task 4 (25 pts) [2.5] Add code to handle goto and conditionals (e.g., if_icmpge). Now
you should be able to execute loops, as in

int main () {
int i; int sum = 0;
for (i = 15; i <= 122; i++)

sum += i;
return sum;

}

Task 5 (20 pts) [2.6,2.7] Add function calls (invokestatic, invokenative); you’ll proba-
bly want to initialize the variable callStack to something better than NULL and use
callStack to manage the call stack in some form. You will also need to revisit return.
You may want to focus on ordinary C0 function calls (invokestatic, return) before
moving on to native function calls (invokenative).

Now your main function can call auxiliary functions, such as the ubiquitous recursive
factorial function, and library functions that print output:

int factorial(int n) {
if (n == 0) return 1;
else return n * factorial(n-1);

}
int main () {

printint(factorial(15));
println(" is the factorial of 15");
return 0;

}

Task 6 (10 pts) [2.8] Add the C0 heap, where arrays and structs are allocated. After this,
you should be able to run arbitrary C0 code.

15-122 Homework 8 Page 13 of 16

4.3 Assertions

Ideally, we would establish invariants of the bytecode that we read from a file to make sure no
runtime memory or type error occurs. In the JVM this is referred to as bytecode verification.
Unfortunately, the current bytecode format does not provide enough information to do this.
Even if it did, it would be a major project in itself. So you have to fall back on dynamic
checks. These checks come in two categories:

1. The usual checks on the runtime structure of your own code, verifying that pointers
are not null, etc.

2. Checks that the C0 bytecode you have read in behaves properly.

Some of the checks in the second category are mandated:

(a) The C0 program must not dereference the C0 null pointer or perform pointer arithmetic
on it.

(b) The C0 program must not access memory outside the bounds of a C0 array.

(c) The C0 program must not perform illegal integer division (division by 0, or the min int
divided by -1).

(d) The C0 program must not shift left or right by a number < 0 or ≥ 32.

If you encounter these runtime errors, you should produce error messages using the provided
functions

• void c0_memory_error(char *err) (for memory-related errors)

• void c0_arith_error(char *err) (for division or shift-related errors)

By calling these functions, which are declared in c0vm_abort.h, you make it clear that this
is a runtime error in the bytecode you are executing and not a bug in your machine.

The first category of checks should in principle be redundant. For example, the cc0
compiler should never produce a bytecode file that jumps to an invalid address. Nevertheless,
bytecode written by hand or a bug in the cc0 compiler or your VM could lead to such issues.
Since C does not guarantee detection of such incorrect jumps or accesses, your code should
do that using appropriate assert statements, or ASSERT, REQUIRES, and ENSURES. Then, if
the bytecode itself or your virtual machine implementation has a bug, it will be discovered
as soon as unexpected incorrect behavior occurs. The macro annotations are recommended
so that there is no undue overhead for correct code when your machine has been debugged.

4.4 The Proliferation of Types

One common issue in writing virtual machines and similar (almost) self-referential code is
the proliferation of different types at different levels, sometimes with the same name. It will
be important for you to understand the various level of types involved, whether they are

15-122 Homework 8 Page 14 of 16

signed or unsigned, and what they refer to. In addition you will have to cast between types
for various operations.

The following table might help. The C type is only recommended, not required.

C0 type C0VM type C type (recommended)
int w32 int32_t
bool w32 int32_t
char w32 int32_t
t[] * void*
t* * void*

struct s (none) (none)
function function pool index struct function_info
library fn native pool index struct native_info

Sometimes you will have to cast the C type that represent the C0VM types to a form where
they are appropriate for the operation to be performed on them. An example of this are the
arithmetic operations, which are reliably performed on unsigned ints so we have to cast to
and from these types.

4.5 Manage Your Time Well

Remember that this homework is worth 100 points. You should plan on working on this
for an hour or two every day, so you can ask for help early on if you need it. Don’t wait
until the last few days! Post general questions on Piazza (e.g., questions about the C0VM
specification, wording of tasks, requirements for handin, etc.).

A C0VM Instruction Reference
What follows is a reference for the C0VM bytecode, which is also given as part of the handout
(c0vm-ref.txt). Every line that describes an operation has the following format:

0xYZ omne S -> S’ (other effect)

where 0xYZ is the opcode in hex, omne is the operation mnemonic, and the remaining text
describes the effect of the operation. The description includes the effect on the stack (e.g.
transform stack S into stack S’) and any other effects (e.g. modify the program counter).

S = operand stack
V = local variable array, V[0..num_vars)

15-122 Homework 8 Page 15 of 16

Instruction operands:
<i> = local variable index (unsigned)
 = byte (signed)
<s> = element size in bytes (unsigned)
<f> = field offset in struct in bytes (unsigned)
<c> = <c1,c2> = pool index = (c1<<8|c2) (unsigned)
<o> = <o1,o2> = pc offset = (o1<<8|o2) (signed)

Stack operands:
a : * = address ("reference")
x, i, n : w32 = 32 bit word representing an int, bool, or char ("primitive")
v = arbitrary value (v:* or v:w32)

Stack operations

0x59 dup S, v -> S, v, v
0x57 pop S, v -> S
0x5F swap S, v1, v2 -> S, v2, v1

Arithmetic

0x60 iadd S, x:w32, y:w32 -> S, x+y:w32
0x7E iand S, x:w32, y:w32 -> S, x&y:w32
0x6C idiv S, x:w32, y:w32 -> S, x/y:w32
0x68 imul S, x:w32, y:w32 -> S, x*y:w32
0x80 ior S, x:w32, y:w32 -> S, x|y:w32
0x70 irem S, x:w32, y:w32 -> S, x%y:w32
0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32
0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32
0x64 isub S, x:w32, y:w32 -> S, x-y:w32
0x82 ixor S, x:w32, y:w32 -> S, x^y:w32

Local Variables

0x15 vload <i> S -> S, v v = V[i]
0x36 vstore <i> S, v -> S V[i] = v

Constants

0x01 aconst_null S -> S, null:*
0x10 bipush S -> S, x:w32 (x = (w32)b, sign extended)
0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])
0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])

15-122 Homework 8 Page 16 of 16

Control Flow

0x00 nop S -> S
0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)
0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)
0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)
0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)
0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))
0xBF athrow S, a:* -> S (c0_user_error(a))
0xCF assert S, x:w32, a:* -> S (c0_assertion_failure(a) if x == 0)

Functions

0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v
(function_pool[c1<<8|c2] => g, g(v1,...,vn) = v)

0xB0 return ., v -> . (return v to caller)
0xB7 invokenative <c1,c2> S, v1, v2, ..., vn -> S, v

(native_pool[c1<<8|c2] => g, g(v1,...,vn) = v)

Memory

0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)
0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated)
0xBE arraylength S, a:* -> S, n:w32 (n = \length(a))

0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset)
0x63 aadds S, a:*, i:w32 -> S, (a+s*i):*

(a != NULL, 0 <= i < \length(a))

0x2E imload S, a:* -> S, x:w32 (x = *a, a != NULL, load 4 bytes)
0x2F amload S, a:* -> S, b:* (b = *a, a != NULL, load address)
0x4E imstore S, a:*, x:w32 -> S (*a = x, a != NULL, store 4 bytes)
0x4F amstore S, a:*, b:* -> S (*a = b, a != NULL, store address)

0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)
0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)

	The Structure of the C0VM
	Types
	Runtime Data Areas
	The Program Counter
	The Call Stack
	The Operand Stack
	The Heap
	Constant Pools
	Function Pools

	Frames
	Runtime Errors

	Instruction Set
	Stack Manipulation
	Arithmetic Instructions
	Local Variables
	Constants
	Control Flow
	Function Calls and Returns
	Native Function Calls
	Memory Allocation, Load, and Store

	Bytecode File Format
	Programming Tasks and Coding Advice
	Testing
	Incremental Implementation
	Assertions
	The Proliferation of Types
	Manage Your Time Well

	C0VM Instruction Reference

