15-122 Homework 2 Page 1 of 11

15-122: Principles of Imperative Computation, Spring 2013
Homework 2 Programming: Twitterlab 2>

Due: Monday, February 11, 2013 by 23:59 P

For the programming portion of this week’s homework, you’ll write two files CO files corre-
sponding to two different string processing tasks, and a two other files that performs unit
tests on a potentially buggy sorting implementation:

e duplicates.cO (described in Section
e count_vocab.cO (described in Section
e sort-test.cO (described in Section

e sort_copy-test.cO (described in Section

You should submit these files electronically by 11:59 pm on the due date. Detailed submission
instructions can be found below.

15-122 Homework 2 Page 2 of 11

Assignment: String Processing (20 points)

Starter code. Download the file hw2-handout.tgz from the course website. When you
unpack it, you will find a 1ib/ directory with several CO files, including stringsearch.cO
and readfile.c0. You will also see a texts/ directory with some sample text files you may
use to test your code. You should not modify or submit code in the 1ib directory.

For this homework, you are not provided any main () functions. Instead, you should write
your own main() functions for testing your code. You should put this test code in separate
files from the ones you will submit for the problems below (e.g. duplicates-test.c0). You
may hand in these files or not.

Compiling and running. You will compile and run your code using the standard CO tools.
For example, if you've completed the program duplicates that relies on functions defined
in stringsearch.c0O and you've implemented some test code in duplicates-test.c0, you
might compile with a command like the following:

% ccO duplicates.cO duplicates-test.cO

Don’t forget to include the -d switch if you'd like to enable dynamic annotation checking,
but this check should be turned off when you are evaluating the running time of a function.

Submitting. Once you've completed some files, you can submit them to Autolab. There
are two ways to do this:

From the terminal on Andrew Linux (via cluster or ssh) type:

% handin hw2 duplicates.cO count_vocab.cO \
sort-test.cO sort_copy-test.cO README.txt

Your score will then be available on the Autolab website.

Your files can also be submitted to the web interface of Autolab. To do so, please tar
them, for example:

% tar -czvf sol.tgz duplicates.cO count_vocab.cO \
sort-test.cO sort_copy-test.cO README.txt

Then, go to https://autolab.cs.cmu.edu to submit.

You can submit this assignment as often as you would like. When we grade your assign-
ment, we will consider the most recent version submitted before the due date. If you get any
errors while trying to submit your code, you should contact the course staff immediately.

https://autolab.cs.cmu.edu

15-122 Homework 2 Page 3 of 11

Annotations. Be sure to include appropriate //@requires, //@ensures, //@assert, and
//@loop_invariant annotations in your program. For this assignment, we have provided
the pre- and postconditions for many of the functions that you will need to implement.
However, you should provide loop invariants and any assertions that you use to check your
reasoning. If you write any “helper” functions, include precise and appropriate pre- and
postconditions.

You should write these as you are writing the code rather than after you're done: docu-
menting your code as you go along will help you reason about what it should be doing, and
thus help you write code that is both clearer and more correct. Annotations are part of
your score for the programming problems; you will not receive maximum credit
if your annotations are weak or missing.

Unit testing. You should write unit tests for your code. This involves writing a separate
main() function that runs individual functions many times with various inputs, asserting
that the expected output is produced. You should specifically choose function inputs that
are tricky or are otherwise prone to fail. While you will not directly receive a large amount
of credit for these tests, your tests will help you check the correctness of your code, pinpoint
the location of bugs, and save you hours of frustration.

Style. Strive to write code with good style: indent every line of a block to the same level,
use descriptive variable names, keep lines to 80 characters or fewer, document your code
with comments, etc. If you find yourself writing the same code over and over, you should
write a separate function to handle that computation and call it whenever you need it. We
will read your code when we grade it, and good style is sure to earn our good graces. Feel
free to ask on Piazza if you're unsure of what constitutes good style.

Task 0 (5 points) 5 points on this assignment will be given for style.

15-122 Homework 2 Page 4 of 11

1 String Processing Overview

The three short programming problems you have for this assignment deal with processing
strings. In the CO language, a string is a sequence of characters. Unlike languages like C, a
string is not the same as an array of characters. (See section 8 in the C0 language reference,
section 2.2 of the CO library reference, and the page on Strings in the CO tutoriall] for more
information on strings). There is a library of string functions (which you include in your
code by #use <string>) that you can use to process strings:

// Returns the length of the given string
int string_length(string s)

// Returns the character at the given index of the string.
// If the index is out of range, aborts.
char string_charat(string s, int idx)

//@requires 0 <= idx && idx < string_length(s);

// Returns a new string that is the result of concatenating b to a.
string string_join(string a, string b)
//@ensures string_length(\result) == string_length(a) + string_length(b);

// Returns the substring composed of the characters of s beginning at
// index given by start and continuing up to but not including the
// index given by end. If end <= start, the empty string is returned
string string_sub(string a, int start, int end)
//@requires 0 <= start && start <= end &% end <= string_length(a);
//@ensures string_length(\result) == end - start;

bool string_equal(string a, string b)

int string_compare(string a, string b)
//Q@ensures -1 <= \result && \result <= 1;

The string_compare function performs a lexicographic comparison of two strings, which
is essentially the ordering used in a dictionary, but with character comparisons being based
on the characters’ ASCII codes, not just alphabetical. For this reason, the ordering used
here is sometimes whimsically referred to as “ASClIbetical” order. A table of all the ASCII
codes is shown in Figure[l] The ASCII value for 0’ is 0x30 (48 in decimal), the ASCII code
for A’ is 0x41 (65 in decimal) and the ASCII code for ’a’ is 0x61 (97 in decimal). Note
that ASCII codes are set up so the character *A’ is “less than” the character *B’ which is
less than the character ’C’ and so on, so the “ASClIIbetical” order coincides roughly with
ordinary alphabetical order.

http://c0.typesafety.net/tutorial/Strings.html

http://c0.typesafety.net/tutorial/Strings.html

15-122 Homework 2 Page 5 of 11

o |12 3 4|5 /|6 |7
0 | MUL | DLE |zpace| (O @ P : 1]
1 |soH |BE1 | | |
2 | st Doz | " 2 | B| R | & r
3 |ETx [(F5] # [
4 |EOT |Dc4 | $ 4 10| T | d t
b |EMQ | MAK | % 5 = Ll =]
6 |AcK [svM | & | B FER f W
7 |BEL |[ETB| ' I G| W | g |w
8 | B CanN| | T S =
9 [EGESEERE) E| I i I W
A | LF zuB| * |z 7
B |vr |Esc| + N | e
c|F |Fs| . | = Lt | |
DfcR |G| - |=M|] [m]| !}
E | s0 | Rs | . = no| ~
F | = |[Us | | Y R 0 | del

Figure 1: The ASCII table

2 Removing Duplicates

In this programming exercise, you will take a sorted array of strings and return a new sorted
array that contains the same strings without duplicates. The length of the new array should
be just big enough to hold the resulting strings. Place your code for this section in a file
called duplicates.cO; you'll want this file to start with #use "lib/stringsearch.c0" in
order to get the is_sorted function from class adapted to string arrays. Implement unit
tests for all of the functions in this section in a file called duplicates_test. cO.

Task 1 (1 pt) Implement a function matching the following function declaration:

bool is_unique(string[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);

where n represents the size of the subarray of A that we are considering. This function should
return true if the given string array contains no repeated strings and false otherwise.

Task 2 (1 pt) Implement a function matching the following function declaration:

int count_unique(string[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);

where n represents the size of the subarray of A that we are considering. This function should
return the number of unique strings in the array, and your implementation should have an
appropriate asymptotic running time given the precondition.

15-122 Homework 2 Page 6 of 11

Task 3 (3 pts) Implement a function matching the following function declaration:

string[] remove_duplicates(string[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);

where n represents the size of the subarray of A that we are considering. The strings in
the array should be sorted before the array is passed to your function. This function should
return a new array that contains only one copy of each distinct string in the array A. Your
new array should be sorted as well. Your implementation should have a linear asymptotic
running time. Your solution should include annotations for at least 3 strong postconditions.

You must include annotations for the precondition(s), postcondition(s) and loop invari-
ant(s) for each function. You may include additional annotations for assertions as necessary.
You may include any auxiliary functions you need in the same file, but you should not include
amain() function.

3 DosLingos (Counting Common Words)

The story: You're working for a Natural Language Processing (NLP) startup company
called DosLingos.ﬂ Already, your company has managed to convince thousands of users to
translate material from English to Spanish for free. In a recent experiment, you had users
translate only newswire text and you’ve managed to train your users to recognize words in
an English newspaper. However, now you're considering having these same users translate
Twitter tweets as well, but you're not sure how many words of English Twitter dialect your
Spanish-speaking users will be able to recognize.

Your job: In this exercise, you will write a functions for analyzing the number of tokens
from a Twitter feed that appear (or not) in a user’s vocabulary. The user’s expected vo-
cabulary will be represented by a sorted array of strings vocab that has length v, and we
will maintain another integer array, freq, where freq[i] represents the number of times we
have seen vocab[i] in tweets so far (where i € [0,v)).

vocab
freq
"11) |12 o o 2 4 1 2 |

2 Any resemblance between this scenario and Dr. Luis von Ahn’s company DuoLingo (www.duolingo.com)
are purely coincidental and should not be construed otherwise.

”

Mhan llhis" llis lllistn llof" lloutn "Winter"

15-122 Homework 2 Page 7 of 11

This is an important pattern, and one that we will see repeatedly throughout the semester
in 15-122: the (sorted) vocabulary words stored in vocab are keys and the frequency counts
stored in freq are values.

The function count_vocab that we will write updates the values — the frequency counts
— based on the unsorted Twitter data we are getting in. For example, consider a Twitter
corpus containing only this tweet by weatherman Scott Harbaugh:

Scott Harbaugh i~
A

Phil is out of his burrow

4 Reply T3 Retweet * Favorite ®®® More

We would expect count_vocab(vocab,freq,8,"texts/scottweet.txt",b) toreturn 1 (be-
cause only one word, “Phil,” is not in our example vocabulary), leave the contents of vocab
unchanged, and update the frequency counts in freq as follows:

vocab
freq
TR S O PO PR PR PR R

Your data: DosLingos has given you 4 data files for your project in the texts/ directory:

”

llha" llhisn "iS lllist" llof" llout" "Winter"

e news_vocab_sorted.txt - A sorted list of vocabulary words from news text that
DosLingos users are familiar with.

e scotttweet.txt - Scott Harbaugh’s tweet above.

e twitter_1ik.txt - A small collection of 1000 tweets to be used for testing slower
algorithms.

e twitter_200k.txt - A larger collection of 200k tweets to be used for testing faster
algorithms.

15-122 Homework 2 Page 8 of 11

Your tools: DosLingos already has a CO0 library for reading text files, provided to you as
lib/readfile.cO, which implements the following functions:

// first call read_words to read in the content of the file
string_bundle read_words(string filename)

You need not understand anything about the type string_bundle other than that you
can extract its underlying string array and the length of that array:

// access the array inside of the string_bundle using:
string[] string_bundle_array(string_bundle sb)

// to determine the length of the array in the string_bundle, use:
int string_bundle_length(string_bundle sb)

Here’s an example of these functions being used on Scott Harbaugh’s tweet:

$ coin lib/readfile.cO

--> string_bundle bund = read_words("texts/scotttweet.txt");
bund is OxFFAFBBEO (struct fat_string_arrayx*)
--> string_bundle_length(bund) ;

6 (int)

--> string[] tweet = string_bundle_array(bund) ;
tweet is OxFFAFB670 (string[] with 6 elements)
--> tweet[0];

"phil" (string)

-—> tweet[5];

"burrow" (string)

Being connoisseurs of efficient algorithms, DosLingos has also implemented their own set
of string search algorithms in 1ib/stringsearch.c0, which you may also find useful for this
assignment:

int linsearch(string x, string[] A, int n) // Linear search
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
/*Q@ensures (-1 == \result && !is_in(x, A, 0, n))
[l ((0 <= \result && \result < n) && string_equal (A[\result], x)); @x/

int binsearch(string x, string[] A, int n) // Binary search
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
/*Q@ensures (-1 == \result && !is_in(x, A, 0, n))
|| ((0 <= \result && \result < n) && string_equal(A[\result], x)); @x/

You can include these libraries in your code by writing #use "lib/readfile.c0" and
#use "lib/stringsearch.cO"

15-122 Homework 2 Page 9 of 11

Task 4 (4 pts) Create a file count_vocab.cO containing a function definition count_vocab
that matches the following function declaration:

int count_vocab(string[] vocab, int[] freq, int v,
string tweetfile,
bool fast)
//@requires v == \length(vocab) && v == \length(freq);
//@requires is_sorted(vocab, 0, v) && is_unique(vocab, v);

The function should return the number of occurrences of words in the file tweetfile that
do not appear in the array vocab, and should update the frequency counts in freq with the
number of times each word in the vocabulary appears. If a word appears multiple times in
the tweetfile, you should count each occurrence separately, so the tweet “ha ha ha LOL
LOL” would cause the the frequency count for “ha” to be incremented by 3 and would cause
2 to be returned, assuming LOL was not in the vocabulary.

Note that a precondition of count_vocab is that the vocab must be sorted, a fact you
should exploit. Your function should use the linear search algorithm when fast is set to false
and it should use the binary search algorithm when fast is true.

Because count_vocab uses the is_unique function you wrote earlier, when you write a
count_vocab-test.cO function to test your implementation, you’ll want to include the file
duplicates.cO on the command line:

% ccO duplicates.cO count_vocab.cO count_vocab-test.cO

Task 5 (1 pt) Create a file README. txt answering the following questions:

1. Give the asymptotic running time of count_vocab under (1) linear and (2) binary
search using big-O notation. This should be in terms of v, the size of the vocabulary,
and n, the number of tweets in tweetfile.

2. How many seconds did it take your function to run on the linear search strategy
(fast=false) using the small 1K twitter text? Do not use contract checking via
the -d option. Also, these tests should use ccO, not Coin, so you’ll need to write a
file count_vocab-time.cO to help you when you do this step.

You should use the Unix command time in this step. You can report either wall clock
time or CPU time, but say which one you used.

Example: time ./count_vocab

3. How many seconds did it take for the binary search strategy (fast=true) to run on the
small 1K twitter text?

4. How many seconds did it take for the binary search strategy (fast=true) on the larger
200K twitter text?

Submit this file along with the rest of your code.

15-122 Homework 2 Page 10 of 11

4 Unit testing

DosLingos’s old selection sort is no longer up to the task of sorting large texts to make
vocabularies. Your colleagues currently use two sorts, both given in 1ib/stringsort. cO:

void sort(string[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(A, lower, upper);

string[] sort_copy(string[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(\result, 0, \length(\result));

The first is an in-place sort like we discussed in class, and the second is a copying sort that
must leave the original array A unchanged and return a sorted array of length upper-lower.
(Note that neither of these conditions are directly expressed in the contracts.)

DosLingos decided to pay another company to write faster sorting algorithms with the
same interface. Unfortunately, they didn’t realize that the other company was a closed-source
shop, so now your company’s future is depending on code you can’t see — you know that the
contracts are set up correctly, but you don’t know anything about the implementation. This
causes (at least) two big problems.

First, you can’t prove that your sorting functions always respect their contracts — the
best you can do is give a counterexample, writing a test that causes the @ensures statement
to fail. If the outside contractors give you this completely bogus implementation. . .

void sort(string[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(A, lower, upper);

{

return;

}

... then you can show that their implementation is buggy by writing a test file with a main()
function that performs a sort and observing that the @ensures statement fails when you
compile the test with -d and run it.

Second, even code that does satisfy the contracts may not actually be correct! For exam-
ple, this sort_copy function will never fail the postcondition, but it is definitely incorrect:

string[] sort_copy(string[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(\result, 0, \length(\result));
{

return alloc_array(string, upper-lower);

}

15-122 Homework 2 Page 11 of 11

In order to catch this kind of incorrect sort, you will have to write a test file with a main()
function that runs the sort and then uses //@assert statements to check that other correct-
ness conditions hold — to catch this bug, the is_in() and/or binsearch() functions might
be helpful, for instance, though they certainly aren’t necessary.

To get full credit on the next task, you’ll need to write tests with extra assertions that will
fail with assertion errors both if the outside contractors wrote a sometimes-postcondition-
failing implementation and if they exploited the contracts to give you a bogus-but-contract-
abiding implementation.

Task 6 (5 pts) Write two files, sort-test.c0 and sort_copy-test.c0, that test the two
sorting functions. The autograder will assign you a grade based on the ability of your unit
tests to pass when given a correct sort and fail when given various bugqgy sorts. Your tests
must still be safe: it should not be possible for your code to make an array access out-of-
bounds when -d is turned on.

You do not need to catch all our bugs to get full points, but catching additional tests will
be reflected on the scoreboard (and considered for bonus points).

4.1 Testing your tests

You can test your functions with DosLingos’s own (presumably correct) selection sort algo-
rithm, and on the two awful badly broken implementations given in this section, by running
the following commands:

% ccO -d lib/stringsort.cO sort-test.cO

% ./a.out

% ccO -d lib/stringsort.cO sort_copy-test.cO

% ./a.out

% ccO -d lib/sort-awful.cO sort-test.cO

% ./a.out

% ccO -d lib/sort_copy-awful.cO sort_copy-test.cO
%h ./a.out

All four of these tests should compile and run, but the last two invocations of ./a.out
should trigger a contract violation if your tests are more than minimal. We will only test
one function at a time, so sort-test.cO must only reference the sort() function and
sort_copy-test.cO must only reference the sort_copy () function. Both can reference the
specification function is_sorted and all other functions defined in 1ib/stringsearch.cO.
You can #use "lib/stringsearch.c0" in your tests, but it is important that you do not
#use "lib/stringsort.c0".

	String Processing Overview
	Removing Duplicates
	DosLingos (Counting Common Words)
	Unit testing
	Testing your tests

