
15-122 Homework 1 Page 1 of 12

15-122: Principles of Imperative Computation, Spring 2013

Homework 1 Programming: Imagelab

Due: Monday, February 4, 2013 by 23:59

For the programming portion of this week’s homework, you’ll review how images are stored
in the computer using C0 (described in Section 1), and then you’ll write four C0 files:
imageutil.c0 (described in Section 1.1), quantize.c0 (described in Section 2.1), reflect.c0
(described in Section 2.2), and mask.c0 (described in Section 2.3). You’ll also have an op-
portunity to design your own image processing function (described in Section 2.4).

You should submit your code electronically by 11:59 pm on the due date. Detailed submission
instructions can be found below.

15-122 Homework 1 Page 2 of 12

Assignment: Image Manipulation (25 points)

Starter code. Download the file hw1-handout.tgz from the course website or Autolab.
When you unpack it, you will find a number of files.

Four of the files are imageutil.c0, quantize.c0, reflect.c0, and mask.c0, which are
where you will write your solution to the required image manipulation problems below.
These four files are the only files that you should submit for these problems. Note that you
should not write a main() function in any of these files. You will also see several *-main.c0
files, which contain the main() functions for each task. These can be used to compile and
test your code. Finally, there is manipulate.c0 and manipulate-main.c0, for the optional
manipulation described in Section 2.4.

In addition, you will find a sample manipulation remove-red.c0, which removes the red
channel from each pixel of an image, and its associated main file remove-red-main.c0. This
sample provides a complete program that you can compile and execute, and you may pattern
your code after the code in remove-red.c0 if you find it convenient to do so. (The code for
the remove red function also appears in Appendix A.)

Finally, you will also see an images/ directory with some sample input images and
some sample outputs for some of the manipulations. On a Linux cluster machine, there are
several programs you can use to view the images, including display, gpicview, qiv, eog,
and gthumb. Play around and find one you like.

Compiling and running. To compile one of your completed exercises just specify the
file(s) on the command line in the order you want them compiled. You can compile your
files on any Andrew system by running the command

cc0 <file1>.c0 <file2>.c0 <file3>.c0 -o <executablefilename>

from the directory where your c0 files reside. This will will place the compiled binary in the
file <executablefilename> rather than the usual default a.out.

Once you’ve compiled <executablefilename> in this way, you can run it with the com-
mand

./<executablefilename>

The file so produced will expect some options of its own, at the very least an option -i

<input file> specifying the input image to manipulate. If you run one of the programs
without any arguments, you will get a short usage message explaining the options particular
to that program.

As a concrete example, you can compile the remove-red filter with dynamic checking
and run it on the sample image g5.png in the images/ directory by running the following
commands in sequence:

cc0 -d remove-red.c0 remove-red-main.c0 -o remove-red

./remove-red -i images/g5.png -o images/g5nored.png

If you have any problems compiling or running your code as described here, you should
contact the course staff.

15-122 Homework 1 Page 3 of 12

Submitting. Once you’ve completed some files, you can submit them to Autolab. There
are two ways to do this:

From the terminal on Andrew Linux (via cluster or ssh) type:

handin hw1 imageutil.c0 quantize.c0 reflect.c0 mask.c0 manipulate.c0

Your score will then be available on the Autolab website.

Your files can also be submitted to the web interface of Autolab. To do so, please tar

them, for example:

tar -czvf sol.tgz imageutil.c0 quantize.c0 reflect.c0 mask.c0 manipulate.c0

Then, go to https://autolab.cs.cmu.edu/15122-f12 and submit them as your solu-
tion to homework 1.

You may submit your assignment up to 25 times. When we grade your assignment, we
will consider the most recent version submitted before the due date. If you get any errors
while trying to submit your code, you should contact the course staff immediately.

Testing. You are encouraged to use the provided *-main.c0 files to help you test your
code. Feel free to write additional testing code of your own before submitting to Autolab
– don’t rely on the grader’s output for debugging. For this assignment, we are providing a
program, imagediff to help you compare your output images to the sample images in the
handout, optionally saving an image that shows you exactly where the two images differ. It
is in the course directory on afs, so it is available on any cluster machine or when you are
connected via ssh. For example:

imagediff -i images/sample.png -j images/my-image.png -o images/diff.png

Annotations. Be sure to include //@requires, //@ensures, and //@loop invariant

annotations in your program. You should write these as you are writing the code rather
than after you’re done: documenting your code as you go along will help you reason about
what it should be doing, and thus help you write code that is both clearer and more correct.
Proper use of annotations will be tested by Autolab and will be a component of your style
grade.

Style. Strive to write code with good style: indent every line of a block to the same level,
use descriptive variable names, keep lines to 80 characters or fewer, document your code
with comments, etc. If you find yourself writing the same code over and over, you should
write a separate function to handle that computation and call it whenever you need it. We
will read your code when we grade it, and good style is sure to earn our good graces. Feel
free to ask on Piazza if you’re unsure of what constitutes good style.

Task 0 (5 points) 5 points on this assignment will be given for style.

https://autolab.cs.cmu.edu/15122-f12

15-122 Homework 1 Page 4 of 12

1 Image Manipulation Overview

The three short programming problems you have for this assignment deal with manipulating
images. An image will be stored in a one-dimensional array of integers, where each integer
is a 32-bit value representing one pixel of the image. Pixels are stored in the array row by
row, left to right starting at the top left of the image. For example, if a 5 × 5 image has the
following pixel “values”:

a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

then these values would be stored in the array in this order:

a b c d e f g h i j k l m n o p q r s t u v w x y

In the 5× 5 image, the pixel i is in row 1, column 3 (rows and columns are indexed starting
with 0) but is stored in the one-dimensional array at index 8. An image must have at least
one pixel.

Each pixel in the array is a 32-bit integer that can be broken up into 4 components with
8 bits each:

a0a1a2a3a4a5a6a7 r0r1r2r3r4r5r6r7 g0g1g2g3g4g5g6g7 b0b1b2b3b4b5b6b7

where:

a0a1a2a3a4a5a6a7 represents the alpha value (how opaque the pixel is)
r0r1r2r3r4r5r6r7 represents the intensity of the red component of the pixel
g0g1g2g3g4g5g6g7 represents the intensity of the green component of the pixel
b0b1b2b3b4b5b6b7 represents the intensity of the blue component of the pixel

Each 8-bit component can range between a minimum of 0 (binary 00000000 or hex 0x00) to
a maximum of 255 (binary 11111111 or hex 0xFF).

For example, a pixel that is completely opaque with only green at its maximum intensity
would be stored as the integer 0xFF00FF00. An opaque pixel that is medium gray would
be 0xFF7F7F7F (equal parts red, green, and blue at medium intensity).

For the rest of the assignment, we will work under the assumption of a type definition
that makes pixel an alias for int:

typedef int pixel;

Since ints are used for many other things (like the width and height of an image, for
example), a type alias is useful for distinguishing those instances where we mean to interpret
an int as an RGB pixel. This type definition is included in imageutil.c0, which you will
work on first; use the pixel type when appropriate.

15-122 Homework 1 Page 5 of 12

1.1 Creating a set of Image Utility Functions

In this problem, you will complete the implementation of the functions specified in the
imageutil.c0 file. This file contains functions that may be helpful for you in the subsequent
problems. The specification (expected input and output) for each function is written in a
comment above the function declaration. The preconditions and postconditions are also
written out in English explicitly; you must translate these into @ensures and @requires

statements.

TASK 1 (5 pts.) Complete the C0 file imageutil.c0 that includes a number of helpful
image utility functions. Include additional assertions and loop invariants as necessary. We
will compile your program as follows:

cc0 -d imageutil.c0 imageutil-main.c0

using your imageutil.c0 file. Your code must compile using these instructions with files
shown in the order given.

We do not distribute a imageutil-main.c0 file; you can check that imageutil.c0 com-
piles using coin. You are encouraged to write your own imageutil-main.c0 file that tests
imageutil.c0. Do NOT include a main function in your imageutil.c0 file.

2 Image Transformations

The rest of this assignment involves implementing a the core part of a series of transforma-
tions. Try out the remove-red transformation described in the “Compiling and running”
instructions above if you have not already done so; the code for this transformation can be
found at the end of the assignment.

Each of the pieces of starter code come without appropriate preconditions and postcon-
ditions; you should add these. For instance, it is always a precondition that the given width
and height are a valid image size that matches the length of the pixel array passed to the
function; the quantize function should have a precondition that the q_level argument is
between 0 and 7 (inclusive), and so on. If these preconditions do not hold, your function
should abort with an annotation failure when called with the -d flag.

Each function you write will take an array representation of the input image and return
an array representation of the output image. These functions should not be destructive: you
should make your changes in a copy of the array, and not make any changes to the original
array. You may include any auxiliary functions you need in the same file, but you should
not include a main() function.

2.1 Quantization of an Image

In this problem, you will implement a function that achieves a quantization effect on an
image. Quantization reduces the total number of colors used in an image. You can see an
example in Figure 1.

Given an ordinary image of size w × h and a quantization level q between 0 and 7,
inclusive, for each pixel in the image, take each color component (red, green and blue) and

15-122 Homework 1 Page 6 of 12

Figure 1: A sporty coupe with quantization level 0 (left) and level 7 (right).

clear the lowest q bits. For example, suppose the color components for a pixel are given by
the bytes

RED GREEN BLUE

01101011 10111110 11010111

If the quantization level is 5, then the resulting pixel should have the following color com-
ponents (note how the lower 5 bits are all cleared to 0):

RED GREEN BLUE

01100000 10100000 11000000

Note that an image processed with a quantization level of 0 should not change. For each
pixel, do not change its alpha component.

TASK 2 (6 pts.) Create a C0 file quantize.c0 with a function quantize matching the
following prototype:

pixel[] quantize(pixel[] pixels, int width, int height, int q_level);

This function should implement the algorithm described above, given an array pixels rep-
resenting an image of width width and height height using a quantization level q level.

We will compile your program as follows:

cc0 -d imageutil.c0 quantize.c0 quantize-main.c0 -o quantize

using your imageutil.c0 and quantize.c0 files. Your code must compile using these in-
structions with files shown in the order given. Do NOT include a main function in your
quantize.c0 file. Sample usage is:

./quantize -i images/g5.png -q 6

Running this command should produce an image, images/g5_quantize.png, that is iden-
tical to the file images/g5-quantize6.png distributed with the handout.

15-122 Homework 1 Page 7 of 12

Figure 2: Original image (left); Image after “reflection effect”

2.2 Reflection Effect

In this problem, you will create a reflection effect on an image.
Your task here is to implement a function that takes as input an image of size w × h

and creates a “Reflection” image of size 2w× 2h that contains the same image repeated four
times, the top right image containing the original image, the top left containing the image
reflected across the y-axis, the bottom right containing the image reflected across the x-axis,
and the bottom left containing the image reflected across both axes. A sample image is
shown in Figure 2.

TASK 3 (5 pts.) In the C0 file reflect.c0, complete the reflect function:

pixel[] reflect(pixel[] pixels, int width, int height);

where width and height represent the width and height of the original input image.
We will compile your program as follows:

cc0 -d imageutil.c0 reflect.c0 reflect-main.c0 -o reflect

using your imageutil.c0 and reflect.c0 files. Your code must compile using these in-
structions with files shown in the order given. Do NOT include a main function in your
reflect.c0 file. Sample usage is:

./reflect -i images/carnegie.png

Running this command should produce an image, images/carnegie_reflect.png, that is
identical to the file images/carnegie-reflect.png distributed with the handout.

15-122 Homework 1 Page 8 of 12

2.3 Applying Masks to an Image

In this problem, you will write a function that will apply a “mask” to an image. A mask
is an n × n array of integers representing weights. For our purposes, n must be odd. The
origin of the mask is its center position. For each pixel in the input image, think of the
mask as being placed on top of the image so its origin is on the pixel we wish to examine.
The intensity value of each pixel under the mask is multiplied by the corresponding value in
the mask that covers it. These products are added together. Always use the original values
for each pixel for each mask calculation, not the new values you compute as you process
the image. Your function will return an array of integers the same size as the image, which
contains the result of applying the mask.

Suppose we want to apply the following mask to the image:1 3 1
3 5 3
1 3 1


Refer to Figure 3 to see how this process works. Suppose we want to compute the value

for pixel e. Imagine overlaying the mask so its center position is on e. We would compute
the result for pixel e as:

a + 3b + c + 3d + 5e + 3f + g + 3h + i

Figure 3: Overlay the 3 X 3 mask over the image so it is centered on pixel e to compute the
new value for pixel e.

Instead of doing this calculation for each channel individually, use the average value of
the red, green, and blue channels. Ignore the alpha channel. For example, if the pixel is
given by (a, r, g, b) = (255, 107, 9, 217), then use (107 + 9 + 217)/3 = 111.

Note that sometimes when you center the mask over a pixel you want to operate on, the
mask will hang over the edge of the image. In this case, compute the weighted sum of only
those pixels the mask covers. For the example shown in Figure 4, the result for the pixel e
is given by:

3b + c + 5e + 3f + 3h + i

15-122 Homework 1 Page 9 of 12

Figure 4: If the mask hangs over the edge of the image, use only those mask values that
cover the image in the weighted sum.

TASK 4 (6 pts.) In the C0 file mask.c0, complete the apply mask function:

int[] apply_mask(pixel[] pixels, int width, int height,

int[] mask, int maskwidth);

This function should implement the masking algorithm described above, given an array
pixels representing an image of width width and height height, using the mask specified
by mask and maskwidth. The returned array should contain the values after the mask is
applied. You may include any auxiliary functions you need in the same file, but you should
not include a main() function. As before, if the width and height are not a valid image size,
if the supplied image does not match the size given by width and height, if the size of the
mask does not agree with maskwidth, or if maskwidth is not odd, then your function should
abort with an annotation failure when compiled and run with the -d flag.

We will compile your program as follows:

cc0 -d imageutil.c0 mask.c0 maskblur-main.c0 -o maskblur

cc0 -d imageutil.c0 mask.c0 maskedge-main.c0 -o maskedge

using your imageutil.c0 and mask.c0 files. Your code must compile using these instructions
with files shown in the order given. Do NOT include a main function in your mask.c0 file.
The transformations done by these main function is described in the next section. Sample
usage is:

./maskblur -i images/cmu.png -m blur-more-mask.txt

./maskedge -i images/cmu.png

Running the first command should produce an image, images/cmu_maskblur.png, that
is identical to the file images/cmu-gaussian.png distributed with the handout. Running
the second command should produce an image, images/cmu_maskedge.png, that is identical
to the file images/cmu-edge.png distributed with the handout.

15-122 Homework 1 Page 10 of 12

2.3.1 Applications

The first main function you are given to test your code, maskblur-main.c0, reads a mask
from a text file, specified by the -m option. The mask is read in from the file and passed along
to apply mask. Then, the data returned from apply mask is used to calculate new intensity
values for the pixels. This is done by summing all of the weights of the mask and dividing by
it. Note that this will cause the edge of the image to have a lower intensity than it should,
since we’re not considering the part of the mask that hangs off of the image, but this is an
acceptable simplification of the problem. Since we’re allowing our masks to have negative
values, this creates the possible issue of having an intensity greater than 255. If this is the
case, the intensities are modified appropriately – for the blur masks, the maskblur-main.c0

program will do division to get an average intensity that is between 0 and 255. Since we’re
returning just one value instead of one per channel, this has the effect of converting the
image to grayscale.

One application of masks is blurring an image, which would be the effect created by the
examples shown in Figure 3 and Figure 4.

The other main function you are given to test your code, maskedge-main.c0, implements
an edge detection algorithm, which is another application of masks. The algorithm described
here is an implementation of Canny Edge Detection, using Sobel Operators. In this case,
the function apply mask will be called three times. The first call will be to blur the image.
For this purpose, the following mask will be used:

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2


After getting the resulting grayscale image, two more filters (the Sobel operators) are ap-

plied to it. These filters determine the change in intensity, which approximates the horizontal
and vertical derivatives.

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 and Gy =

−1 −2 −1
0 0 0

+1 +2 +1


After these two calls to apply mask, the values obtained are used to search for edges

based on the magnitude and direction of the change in intensity. An example of the final
result is shown in Figure 5.

You can even see the intermediate results of the X and Y filters individually by trying:

./maskblur -i images/cmu.png -m sobelX.txt -o images/cmu-edgeX.png

./maskblur -i images/cmu.png -m sobelY.txt -o images/cmu-edgeY.png

15-122 Homework 1 Page 11 of 12

Figure 5: Hammerschlag Hall: original image (left), blurred with the mask (middle), and
after running edge detection (right). See text for mask values.

2.4 Your own image processing algorithm (Optional)

TASK 5 (Optional)
Write a function manipulate that performs an image manipulation of your choice match-

ing the following prototype:

pixel[] manipulate(pixel[] pixels, int width, int height);

You will also have to write two small functions that express the width and height of the
result of your manipulation in terms of the width and height of the input image:

int result_width(int width, int height);

int result_height(int width, int height);

The starter code archive contains a file manipulate.c0 with empty stubs for these functions
and a main file manipulate-main.c0 that you can compile against to get a binary that runs
your manipulation.

If you choose to do this task, be creative! Submissions will be displayed on the Autolab
scoreboard and bonus points may be awarded for exemplary submissions. To include your
image in the scoreboard, use the handin script and include the file output.png. We suggest
generating output.png from one of the sample files, but if your output.png file is generated
from some other (small!) file, include it as manipulate.png with your final submission.

15-122 Homework 1 Page 12 of 12

A Sample Code: Remove Red Channel from an Image

#use <util>

/* make pixel a type alias for int */

typedef int pixel;

pixel[] remove_red (pixel[] A, int width, int height)

//@requires width > 0 && height > 0 && width <= int_max() / height;

//@requires \length(A) >= width*height;

//@ensures \length(\result) == \length(A);

{

int i;

int j;

pixel[] B = alloc_array(pixel, width*height);

for (j = 0; j < height; j++)

//@loop_invariant 0 <= j && j <= height;

{

for (i = 0; i < width; i++)

//@loop_invariant 0 <= i && i <= width;

{

// Clear the bits corresponding to the red component

B[j*width+i] = A[j*width+i] & 0xFF00FFFF;

}

}

return B;

}

	Image Manipulation Overview
	Creating a set of Image Utility Functions

	Image Transformations
	Quantization of an Image
	Reflection Effect
	Applying Masks to an Image
	Applications

	Your own image processing algorithm (Optional)

	Sample Code: Remove Red Channel from an Image

