
Lecture Notes on
Search in Graphs

(Partial Draft)

15-122: Principles of Imperative Computation
Frank Pfenning, André Platzer, Rob Simmons

Lecture 24
April 23, 2013

1 Introduction

In this lecture we introduce graphs. Graphs provide a uniform model for
many structures, for example, maps with distances or Facebook relation-
ships. Algorithms on graphs are therefore important to many applications.
They will be a central subject in the algorithms courses later in the curricu-
lum; here we only provide a very small sample of graph algorithms.

2 Paths in Graphs

We start with undirected graphs which consist of a set V of vertices (also
called nodes) and a set E of edges, each connecting two different vertices.
In particular, these graphs have no edges from a node back to itself. A
graph is connected if we can reach any vertex from any other vertex by
following edges in either direction. In a directed graph edges provide a con-
nection from one node to another, but not necessarily in the opposite direc-
tion. More mathematically, we say that the edge relation between vertices is
symmetric for undirected graphs. In this lecture we only discuss undirected
graphs, although directed graphs also play an important role in many ap-
plications.

The following is a simple example of a connected, undirected graph

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.2

with 5 vertices (A,B,C,D,E) and 6 edges (AB, BC, CD, AE, BE, CE).

D 

E 

C B 

A 

A path in a graph is a sequence of vertices where each vertex is connected
to the next by an edge. That is, a path is a sequence

v0, v1, v2, v3, . . . , vl

of some length l ≥ 0 such that there is an edge from vi to vi+1 in the graph
for each i < l. For example, all of the following are paths in the graph
above:

A−B − E − C −D
A−B −A
E − C −D − C −B
B

The last one is a special case: The length of a path is given by the number of
edges in it, so a node by itself is a path of length 0 (without following any
edges). Paths always have a starting vertex and an ending vertex, which
coincide in a path of length 0. We also say that a path connects its end-
points.

The graph reachability problem is to determine if there is a path connecting
two given vertices in a graph. If we know the graph is connected, this
problem is easy since one can reach any node from any other node. But
we might refine our specification to request that the algorithm return not
just a boolean value (reachable or not), but an actual path. At that point
the problem is somewhat interesting even for connected graphs. Using our
earlier terminology, a path from vertex v to vertex w is a certificate or explicit
evidence for the fact that vertex w is reachable from another vertex v. It is
easy to check whether the certificate is valid, since it is easy to check if each
node in the path is connected to the next one by an edge. It is more difficult
to produce such a certificate.

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.3

For example, the path

A−B − E − C −D

is a certificate for the fact that vertex D is reachable from vertex A in the
above graph. It is easy to check this certificate by following along the path
and checking whether the indicated edges are in the graph.

3 Implicit Graphs

There are many, many different ways to represent graphs. In some appli-
cations they are never explicitly constructed but remain implicit in the way
the problem was solved. One such example was peg solitaire. The vertices of
the graph implicit in this problem are board positions. There is an edge from
A to B if we can make a move in position A to reach position B. Note that
this implicit graph is actually a directed graph since the game does not allow
us to undo a move we just made. The classical reachability question here
would be if from some initial position we can reach another given final po-
sition. We actually solved a related question, namely if we can reach any of
a number of alternative positions (those with exactly one peg) from a given
initial position. We win the game if we can reach any of those positions
with a single peg.

The reason why we did not explicitly construct the full graph is that
for standard boards it is unreasonably large – there are too many reachable
positions. Instead, we incrementally construct it as we search for a solu-
tion in the hope we can find a solution without ever generating all nodes.
In some examples (like the standard English board), this hope was justi-
fied if we were lucky enough to pick a good move strategy. To make sure
that unsolvable boards had no solution, however, we still had to visit ev-
ery reachable position. Just because we have 3 pegs remaining with one
attempt of trying to solve the board does not mean we could not have been
more successful if we had moved the pegs around in a different way.

4 Explicit Graphs & Graph Interface

Sometimes, we do want to represent a graph as a specific set of edges and
vertices, however. In the C code, we’ll refer to our vertices with unsigned
integers. A minimal interface for graphs would allow us to create and free
graphs, check whether an edge exists in the graph, and add a new edge to
the graph.

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.4

typedef unsigned int vertex;

typedef struct graph_header* graph;

graph graph_new(unsigned int numvert);

void graph_free(graph G);

unsigned int graph_size(graph G);

// number of vertices in the graph

bool graph_hasedge(graph G, vertex v, vertex w);

//@requires v < graph_size(G) && w < graph_size(w);

void graph_addedge(graph G, vertex v, vertex w);

//@requires v < graph_size(G) && w < graph_size(w);

//@requires !graph_hasedge(G, v, w);

We use the C0 notation for contracts on the interface functions here. Even
though C compilers do not recognize the //@requires contract and will
simply discard it as a comment, the contract still serves an important role
for the programmer reading the program. For the graph interface, we de-
cide that it does not make sense to add an edge into a graph when that edge
is already there, hence the second requires.

With this minimal interface, we can create a graph for our running ex-
ample (letting A = 0, B = 1, and so on).

graph G = graph_new(5);

graph_addedge(G, 0, 1);

graph_addedge(G, 1, 2);

graph_addedge(G, 2, 3);

graph_addedge(G, 0, 4);

graph_addedge(G, 1, 4);

graph_addedge(G, 2, 4);

5 Adjacency Matrices

There are two simple ways to implement the graph interface. One way is
to represent the graph as a two-dimensional array that represents its edge
relation. We can check if there is an edge from B (= 1) to D (= 3) by looking
for a checkmark in row 1, column 3. In an undirected graph, the top-right
half of this two-dimensional array will be a mirror image of the bottom-left,

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.5

because the edge relation is symmetric.

✔	
 ✔	

✔	
 ✔	
 ✔	

✔	
 ✔	
 ✔	

✔	

✔	
 ✔	
 ✔	

A	

B	

C	

D	

E	

A	
 	
 	
 	
 	
 B	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 D	
 	
 	
 	
 E	

This representation of a graph is called an adjacency matrix, because it is a
matrix that stores which nodes are neighbors.

6 Adjacency Lists

The other classic representation of a graph is as an adjacency list. In an
adjacency list representation, we have a one-dimensional array that looks
much like a hash table. Each vertex has a spot in the array, and each spot
in the array contains a linked list of all the other vertices connected to that
vertex. Our running example would look like this as an adjacency list:

A	

B	

C	

D	

E	

B	
 E	

A	
 C	

B	
 D	
 E	

E	

C	

A	
 B	
 C	

Adjacenct lists and adjacency matrices have different tradeoffs in the
time and space it takes to perform operations. In a sparse matrix, where
there are lots of vertices and not a lot of edges, it usually makes more sense
to use an adjacency list. In a dense matrix, where there are lots of edges, it
may be more efficient to use adjacency matrix.

If we do use an adjacency list representation, it will often make sense to
extend the interface to graphs to give the client access to this linked list of
adjacent edges.

typedef struct adjlist_node adjlist;

struct adjlist_node {

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.6

vertex vert;

adjlist *next;

};

/* Returns a linked list of the neighbors of vertex v.

* This adjacency list is owned by the graph and should

* not be modified by the user.

* @requires(v < graph_size(G)) */

adjlist *graph_connections(graph G, vertex v);

One way to implement the adjacency list version of graphs is as a pointer
to a special kind of C struct, a struct with a flexible array member, i.e. its last
field is an array whose length is only specified at runtime, not at the time of
declaring the type of the struct. This is a struct with two fields: the first is a
unsigned integer representing the actual size, and the second is an array of
adjacency lists.

struct graph_header {

unsigned int size;

adjlist *adj[]; // Flexible array member!

};

The array adj of adjacency lists will be contiguous in memory with the
size field – this is quite different than, say, a hashtable chain, which is a
linked list with data fields of type elem and next pointers. We allocate
this adjacency list using xcalloc to make sure that the adjacency list is
initialized to an empty array. Behind the scenes xcalloc just multiplies
its two arguments; because we are allocating a struct with a flexible array
member, we pass in 1 for the first argument and explicitly figure out the
desired size of the array for the second argument:

graph graph_new(unsigned int size) {

size_t adj_size = sizeof(adjlist*) * size;

graph G = xcalloc(1, sizeof(struct graph_header) + adj_size);

G->size = size;

ENSURES(is_graph(G));

return G;

}

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.7

7 Depth-First Search

The first algorithm we consider for determining if one vertex is reachable
from another is called depth-first search.

Let’s try to work our way up to this algorithm. Assume we are trying to
find a path from u to w. We start at u. If it is equal to w we are done, because
w is reachable by a path of length 0. If not we pick an arbitrary edge leaving
u to get us to some node v. Now we have “reduced” the original problem
to the one of finding a path from v to w.

The problem here is of course that we may never arive at w even if there
is a path. For example, say we want to find a path from A to D in our earlier
example graph.

D 

E 

C B 

A 

We can go A − B − E − A − B − E − · · · without ever reaching D (or we
can go just A−B −A−B − · · ·), even though there exists a path.

We need to avoid repeating nodes in the path we are exploring. A cy-
cle is a path of length 1 or greater that has the same starting and ending
point. So another way to say we need to avoid repeating nodes is to say
that we need to avoid cycles in the path. We accomplish this by marking the
nodes we have already visited so when we visit them again we know not
to consider them again.

Let’s go back to the earlier example and play through this idea while
trying to find a path from A to D. We start by marking A (indicated by hol-
lowing the circle) and go to B. We indicate the path we have been following

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.8

by drawing a double-line along the edges contained in it.

D	

E	

C	
 B	

A	
 D	

E	

C	
 B	

A	
 D	

E	

C	
 B	

A	
 D	

E	

C	
 B	

A	

When we are at B we mark B and have three choices for the next step.

1. We could go back to A, but A is already marked and therefore ruled
out.

2. We could go to E.

3. We could go to C.

Say we pick E. At this point have again three choices. We might consider
A as a next node on the path, but it is ruled out because A has already been
marked. We show this by dashing the edge from A to E to indicate it was
considered, but ineligible. The only possibility now is to go to C, because
we have been at B as well (we just came from B).

D	

E	

C	
 B	

A	
 D	

E	

C	
 B	

A	

From C we consider the link to D (before considering the link to B) and we
arrive at D, declaring success with the path

A−B − E − C −D

which, by construction, has no cycles.

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.9

There is one more consideration to make, namely what we do when we
get stuck. Let’s reconsider the original graph

D 

E 

C B 

A 

and the goal to find a path from E to B. Let’s say we start E − C and then
C −D. At this point, all the vertices we could go to (which is only C) have
already been marked! So we have to backtrack to the most recent choice
point and pursue alternatives. In this case, this could be C, where the only
remaining alternative would be B, completing the path E −C −B. Notice
that when backtracking we have to go back to C even though it is already
marked.

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.10

Depth-first search is characterized not only by the marking, but also
that we always return to our most recent choice and follow a different path.
When no other alternatives are available, we backtrack further. Let’s con-
sider the following slightly more larger graph, where we explore the out-
going edges using the alphabetically last label first.

D	

E	

C	
 B	

A	

F	

G	

We write the current node we are visiting on the left and on the right a stack
of nodes we have to return to when we backtrack. For each of these we
also remember which choices remain (in parentheses). We annotate marked
nodes with an asterisk, which means that we never pick them as the next
node to visit. In particular, when our current node has been marked, then
we have been there and did not find the goal (yet), so we do not explore
again. Hence, we do not care what their neighbors are now, because those
had already been put on the stack earlier and will be or will have been
considered at some point.

For example, at step 5 we do not consider E∗ but go to D instead. We
backtrack, when no unmarked neighbors remain to the current node.

Step Current Neighbors Stack Remark
1 A (E,B)
2 E (C,B,A∗) A∗ (B)
3 C (G,E∗, D) E∗ (B,A∗) | A∗ (B)
4 G (C∗) C∗ (E∗, D) | E∗ (B,A∗) | A∗ (B)
5 C∗ don’t care G∗ () | C∗ (E∗, D) | E∗ (B,A∗) | A∗ (B) Backtrack
6 E∗ don’t care C∗ (D) | E∗ (B,A∗) | A∗ (B)
7 D (F,C∗) C∗ () | E∗ (B,A∗) | A∗ (B)
8 F (D∗) D∗ (C∗) | C∗ () | E∗ (B,A∗) | A∗ (B)
9 D∗ don’t care F ∗ () | D∗ (C∗) | C∗ () | E∗ (B,A∗) | A∗ (B) Backtrack

10 C∗ don’t care D∗ () | C∗ () | E∗ (B,A∗) | A∗ (B) Backtrack ×2
11 B (A∗) E∗ (B,A∗) | A∗ (B) Goal Reached

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.11

We are keeping the visited nodes on a stack so we can easily return to
the most recent one.

bool dfs(graph G, bool *mark, vertex start, vertex target) {

REQUIRES(G != NULL && mark != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if (mark[start]) return false;

mark[start] = true;

printf("Visiting %d\n", start);

if(start == target) return true;

for(adjlist *L = graph_connections(G, start); L != NULL; L = L->next) {

if(dfs(G, mark, L->vert, target)) return true;

}

return false;

}

Note that this recursive implementation of DFS uses the (implicit) stack
of the function calls to dfs and each dfs function body has its own linked
list for the adjacency list. In effect, that gives the search management data
structure the form of a stack of queues (see Clac lab) as indicated in the
example above. The stack elements are separated by | and the elements of
the queue are wrapped in parentheses (B,A∗) etc.

8 Depth-First Search with a single stack

When scrutinizing the above example, we notice that the sophisticated data
structure of a stack of queues was really quite unnecessary for DFS. The
recursive implementation is simple and elegant, but its effect on the data
management is nontrivial.

This can all be simplified by making the stack explicit. In that case there
is a single stack with all the nodes on it that we still need to look at.

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.12

Step Current Neighbors + Old stack = New stack
1 A (E,B) () (E,B)
2 E (C,B,A∗) (B) (C,B,A∗, B)
3 C (G,E∗, D) (B,A∗, B) (G,E∗, D,B,A∗, B)
4 G (C∗) (E∗, D,B,A∗, B) (C∗, E∗, D,B,A∗, B)
5 C∗ don’t care (E∗, D,B,A∗, B) (E∗, D,B,A∗, B)
6 E∗ don’t care (D,B,A∗, B) (D,B,A∗, B)
7 D (F,C∗) (B,A∗, B) (F,C∗, B,A∗, B)
8 F (D∗) (C∗, B,A∗, B) (D∗, C∗, B,A∗, B)
9 D∗ don’t care (C∗, B,A∗, B) (C∗, B,A∗, B)

10 C∗ don’t care (B,A∗, B) (B,A∗, B)
11 B goal reached (A∗, B)

bool dfs_iter1(graph G, vertex start, vertex target) {

REQUIRES(G != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

stack S = stack_new();

push(S, (void*)(uintptr_t)start);

bool mark[graph_size(G)];

for(unsigned int i = 0; i < graph_size(G); i++)

mark[i] = false;

while(!stack_empty(S)) {

vertex v = (vertex)(uintptr_t) pop(S);

if(!mark[v]) {

printf("Visiting %d\n", v);

mark[v] = true;

if (v == target) {

stack_free(S, NULL);

return true;

}

for(adjlist *L = graph_connections(G, v); L != NULL; L = L->next)

push(S, (void*)(uintptr_t)L->vert);

}

}

LECTURE NOTES APRIL 23, 2013

Search in Graphs
(Partial Draft) L24.13

stack_free(S, NULL);

return false;

}

We explicitly put the starting node on the stack. Then, every time we
pop an element of the stack, we check to see whether it has been marked
already (like we did in the iterative implementation). If it wasn’t, we visit
the node by marking it and comparing it to the target. Ultimately, we push
all neighbors on the stack to make sure we look at them later.

9 Breadth-First Search

The iterative DFS algorithm managed his agenda, i.e. the list of nodes it
still had to look at using a stack. But there’s no reason to insist on a stack
for the purposes of that. What happens if we replace the data management
by a queue instead? All of a sudden, we will no longer explore the most
recently found neighbor first as in depth-first search, but, instead, we will
look at the oldest neighbor first. This corresponds to a breadth-first search
where you explore the graph layer by layer. So BFS completes a layer of
the graph before proceeding to the next layer. The code for that and many
other interesting variations of graph search can be found on the web page.

LECTURE NOTES APRIL 23, 2013

	Introduction
	Paths in Graphs
	Implicit Graphs
	Explicit Graphs & Graph Interface
	Adjacency Matrices
	Adjacency Lists
	Depth-First Search
	Depth-First Search with a single stack
	Breadth-First Search

