
Lecture Notes on
Pointers

15-122: Principles of Imperative Computation
Frank Pfenning, Rob Simmons

Lecture 9
February 14, 2013

1 Introduction

In this lecture we complete our discussion of types in C0 by discussing
pointers and structs, two great tastes that go great together. We will discuss
using contracts to ensure that pointer accesses are safe, as well as the use
of linked lists to ensure implement the stack and queue interfaces that were
introduced last time. The linked list implementation of stacks and queues
allows us to handle lists of any length.

Relating this to our learning goals, we have

Computational Thinking: We emphasize the importance of abstraction by
producing a second implementation of the stacks and queues we in-
troduced in the last lecture.

Algorithms and Data Structures: Linked lists are a fundamental data struc-
ture.

Programming: We will see structs and pointers, and the use of recursion in
the definition of structs.

2 Structs and pointers

So far in this course, we’ve worked with five different C0 types – int, bool,
char, string, and arrays t[] (there is a array type t[] for every type t). The
character, string, Boolean, and integer values that we manipulate, store lo-
cally, and pass to functions are just the values themselves, but when we

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.2

consider arrays, the things we store in assignable variables or pass to func-
tions are addresses, references to the place where the data stored in the array
can be accessed. The picture we work with looks like this:

“b”	
   “e”	
   “e”	
   “f”	
  

0	
   1	
   2	
   3	
   4	
  
‘\n’	
  

4	
  

char	
  c	
  

int	
  i	
  

string[]	
  A	
  

An array allows us to store and access some number of values of the
same type (which we reference as A[0], A[1], and so on. The next data
structure we will consider is the struct. A struct can be used to aggregate
together different types of data, which helps us to create data structures.
Compare this to arrays, which is an aggregate of elements of the same type.

Structs must be explicitly declared. If we think of an image, we want to
store an array of pixels alongside the width and height of the image, and a
struct allows us to do that:

typedef int pixel;

struct img_header {

pixel[] data;

int width;

int height;

};

Here data , width , and height are not variables, but fields of the struct.
The declaration expresses that every image has an array of data as well as a
width and a height . This description is incomplete, as there are some miss-
ing consistency checks – we would expect the length of data to be equal to
the width times the height , for instance, but we can capture such properties
in a separate data structure invariant.

Structs do not necessarily fit into a machine word because they can have
arbitrarily many components, so they must be allocated on the heap (in
memory, just like arrays). This is true if they happen to be small enough to
fit into a word in order to maintain a uniform and simple language.

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.3

% coin structdemo.c0

C0 interpreter (coin) 0.3.2 ’Nickel’

Type ‘#help’ for help or ‘#quit’ to exit.

--> struct img_header IMG;

<stdio>:1.1-1.22:error:type struct img_header not small

[Hint: cannot pass or store structs in variables directly; use

pointers]

How, then, do we manipulate structs? We use the same solution as
for arrays: we manipulate them via their address in memory. Instead of
alloc_array we call alloc which returns a pointer to the struct that has
been allocated in memory. Let’s look at an example in coin.

--> struct img_header* IMG = alloc(struct img_header);

IMG is 0xFFAFFF20 (struct img_header*)

We can access the fields of a structs, for reading or writing, through the
notation p->f where p is a pointer to a struct, and f is the name of a field
in that struct. Continuing above, let’s see what the default values are in the
allocated memory.

--> IMG->data;

(default empty int[] with 0 elements)

--> IMG->width;

0 (int)

--> IMG->height;

0 (int)

We can write to the fields of a struct by using the arrow notation on the
left-hand side of an assignment.

--> IMG->data = alloc_array(pixel, 2);

IMG->data is 0xFFAFC130 (int[] with 2 elements)

--> IMG->width = 1;

IMG->width is 1 (int)

--> (*IMG).height = 2;

(*(IMG)).height is 2 (int)

--> IMG->data[0] = 0xFF00FF00;

IMG->data[0] is -16711936 (int)

--> IMG->data[1] = 0xFFFF0000;

IMG->data[1] is -65536 (int)

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.4

The notation (*p).f is a longer form of p->f. First, *p follows the
pointer to arrive at the struct in memory, then .f selects the field f. We
will rarely use this dot-notation (*p).f in this course, preferring the arrow-
notation p->f.

An updated picture of memory, taking into account the initialization
above, looks like this:

“b”	
   “e”	
   “e”	
   “f”	
  

0	
   1	
   2	
   3	
   4	
  
‘\n’	
  

4	
  

char	
  c	
  

int	
  i	
  

string[]	
  A	
  

struct	
  img_header*	
  IMG	
   1	
   2	
  

data	
   width	
   height	
  

0xFF00FF00	
   0xFFFF0000	
  

0	
   1	
   2	
  

3 Pointers

As we have seen in the previous section, a pointer is needed to refer to a
struct that has been allocated on the heap. In can also be used more gener-
ally to refer to an element of arbitrary type that has been allocated on the
heap. For example:

--> int* ptr1 = alloc(int);

ptr1 is 0xFFAFC120 (int*)

--> *ptr1 = 16;

*(ptr1) is 16 (int)

--> *ptr1;

16 (int)

In this case we refer to the value using the notation *p, either to read (when
we use it inside an expression) or to write (if we use it on the left-hand side
of an assignment).

So we would be tempted to say that a pointer value is simply an ad-
dress. But this story, which was correct for arrays, is not quite correct for
pointers. There is also a special value NULL. Its main feature is that NULL is
not a valid address, so we cannot dereference it to obtain stored data. For
example:

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.5

--> int* ptr2 = NULL;

p is NULL (int*)

--> *ptr2;

Error: null pointer was accessed

Last position: <stdio>:1.1-1.3

Graphically, NULL is sometimes represented with the ground symbol, so we
can represent our updated setting like this:

“b”	
   “e”	
   “e”	
   “f”	
  

0	
   1	
   2	
   3	
   4	
  
‘\n’	
  

4	
  

char	
  c	
  

int	
  i	
  

string[]	
  A	
  

struct	
  img_header*	
  IMG	
  

int*	
  ptr1	
  

int*	
  ptr2	
  
16	
  

1	
   2	
  

data	
   width	
   height	
  

0xFF00FF00	
   0xFFFF0000	
  

0	
   1	
   2	
  

To rephrase, we say that a pointer value is an address, of which there
are two kinds. A valid address is one that has been allocated explicitly with
alloc, while NULL is an invalid address. In C, there are opportunities to
create many other invalid addresses, as we will discuss in another lecture.

Attempting to dereference the null pointer is a safety violation in the
same class as trying to access an array with an out-of-bounds index. In C0,
you will reliably get an error message, but in C the result is undefined and
will not necessarily lead to an error. Therefore:

Whenever you dereference a pointer p, either as *p or p->f, you must
have a reason to know that p cannot be NULL.

In many cases this may require function preconditions or loop invariants,
just as for array accesses.

4 Linked Lists

Linked lists are a common alternative to arrays in the implementation of
data structures. Each item in a linked list contains a data element of some
type and a pointer to the next item in the list. It is easy to insert and delete
elements in a linked list, which are not natural operations on arrays, since

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.6

arrays have a fixed size. On the other hand access to an element in the
middle of the list is usually O(n), where n is the length of the list.

An item in a linked list consists of a struct containing the data element
and a pointer to another linked list. In C0 we have to commit to the type
of element that is stored in the linked list. We will refer to this data as
having type elem, with the expectation that there will be a type definition
elsewhere telling C0 what elem is supposed to be. Keeping this in mind
ensures that none of the code actually depends on what type is chosen.
These considerations give rise to the following definition:

struct list_node {

elem data;

struct list_node* next;

};

typedef struct list_node list;

This definition is an example of a recursive type. A struct of this type
contains a pointer to another struct of the same type, and so on. We usually
use the special element of type t*, namely NULL, to indicate that we have
reached the end of the list. Sometimes (as will be the case for our use of
linked lists in stacks and queues), we can avoid the explicit use of NULL and
obtain more elegant code. The type definition is there to create the type
name list, which stands for struct list_node, so that a pointer to a list
node will be list*.

There are some restriction on recursive types. For example, a declara-
tion such as

struct infinite {

int x;

struct infinite next;

}

would be rejected by the C0 compiler because it would require an infinite
amount of space. The general rule is that a struct can be recursive, but
the recursion must occur beneath a pointer or array type, whose values are
addresses. This allows a finite representation for values of the struct type.

We don’t introduce any general operations on lists; let’s wait and see
what we need where they are used. Linked lists as we use them here are
a concrete type which means we do not construct an interface and a layer of
abstraction around them. When we use them we know about and exploit
their precise internal structure. This is contrast to abstract types such as

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.7

queues or stacks (see next lecture) whose implementation is hidden behind
an interface, exporting only certain operations. This limits what clients
can do, but it allows the author of a library to improve its implementation
without having to worry about breaking client code. Concrete types are
cast into concrete once and for all.

5 Queues with Linked Lists

Here is a picture of the queue data structure the way we envision imple-
menting it, where we have elements 1, 2, and 3 in the queue.

	
  
	
  1	
   3	
  2	
  

front	
   back	
  

data	
   next	
  

A queue is implemented as a struct with a front and back field. The
front field points to the front of the queue, the back field points to the back
of the queue. We need these two pointers so we can efficiently access both
ends of the queue, which is necessary since dequeue (front) and enqueue
(back) access different ends of the list.

In the array implementation of queues, we kept the back as one greater
than the index of the last element in the array. In the linked-list implemen-
tation of queues, we use a similar strategy, making sure the back pointer
points to one element past the end of the queue. Unlike arrays, there must
be something in memory for the pointer to refer to, so there is always one
extra element at the end of the queue which does not have valid data or
next pointer. We have indicated this in the diagram by writing X.

The above picture yields the following definition.

struct queue_header {

list* front;

list* back;

};

typedef struct queue_header* queue;

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.8

We call this a header because it doesn’t hold any elements of the queue, just
pointers to the linked list that really holds them. The type definition allows
us to use queue as a type that represents a pointer to a queue header. We
define it this way so we can hide the true implementation of queues from
the client and just call it an element of type queue.

When does a struct of this type represent a valid queue? In fact, when-
ever we define a new data type representation we should first think about
the data structure invariants. Making these explicit is important as we
think about and write the pre- and postconditions for functions that im-
plement the interface.

What we need here is if we follow front and then move down the
linked list we eventually arrive at back. We call this a list segment. We
also want both front and back not to be NULL so it conforms to the picture,
with one element already allocated even if the queue is empty.

bool is_queue(queue Q) {

if (Q == NULL) return false;

if (Q->front == NULL) return false;

if (Q->back == NULL) return false;

if (!is_segment(Q->front, Q->back)) return false;

return true;

}

Next, the code for checking whether two pointers delineate a list segment.
When both start and end are NULL, we consider it a valid list segment, even
though this will never come up for queues. It is a common code pattern for
working with linked lists and similar data representation to have a pointer
variable, here called p, that is updated to the next item in the list on each
iteration until we hit the end of the list.

bool is_segment(list* start, list* end) {

list* p = start;

while (p != end) {

if (p == NULL) return false;

p = p->next;

}

return true;

}

Here we stop in two situations: if p = NULL, then we cannot come up
against end any more because we have reached the end of the list and we

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.9

return false. The other situation is if we find end , in which case we return
true since we have a valid list segment. This function may not terminate
if the list contains a cycle. We will address this issue in the next lecture; for
now we assume all lists are acyclic.

To check if the queue is empty we just compare its front and back. If
they are equal, the queue is empty; otherwise it is not. We require that we
are being passed a valid queue. Generally, when working with a data struc-
ture, we should always require and ensure that its invariants are satisfied
in the pre- and post-conditions of the functions that manipulate it. Inside
the function, we will generally temporarily violate the invariants.

bool queue_empty(queue Q)

//@requires is_queue(Q);

{

return Q->front == Q->back;

}

To obtain a new empty queue, we just allocate a list struct and point both
front and back of the new queue to this struct. We do not initialize the list
element because its contents are irrelevant, according to our representation.
It is good practice to always initialize memory if we care about its contents,
even if it happens to be the same as the default value placed there.

queue queue_new()

//@ensures is_queue(\result);

//@ensures queue_empty(\result);

{

queue Q = alloc(struct queue_header);

list* p = alloc(struct list_node);

Q->front = p;

Q->back = p;

return Q;

}

Let’s take one of these lines apart. Why does

queue Q = alloc(struct queue_header);

make sense? According to the definition of alloc, we might expect

struct queue_header* Q = alloc(struct queue_header);

since allocation returns the address of what we allocated. Fortunately, we
defined queue to be a short-hand for struct queue_header* so all is well.

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.10

To enqueue something, that is, add a new item to the back of the queue,
we just write the data (here: a string) into the extra element at the back,
create a new back element, and make sure the pointers updated correctly.
You should draw yourself a diagram before you write this kind of code.
Here is a before-and-after diagram for inserting "3" into a list. The new or
updated items are dashed in the second diagram.

	
  
	
  1	
   2	
  

front	
   back	
  

data	
   next	
  

Q	
  

	
  
	
  1	
   3	
  2	
  

front	
   back	
  

data	
   next	
  

Q	
  

Another important point to keep in mind as you are writing code that ma-
nipulates pointers is to make sure you perform the operations in the right
order, if necessary saving information in temporary variables.

void enq(queue Q, string s)

//@requires is_queue(Q);

//@ensures is_queue(Q);

{

list* p = alloc(struct list);

Q->back->data = s;

Q->back->next = p;

Q->back = p;

}

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.11

Finally, we have the dequeue operation. For that, we only need to
change the front pointer, but first we have to save the dequeued element
in a temporary variable so we can return it later. In diagrams:

	
  
	
  1	
   3	
  2	
  

front	
   back	
  

data	
   next	
  

	
  
	
  1	
   3	
  2	
  

front	
   back	
  

data	
   next	
  

And in code:

string deq(queue Q)

//@requires is_queue(Q);

//@requires !queue_empty(Q);

//@ensures is_queue(Q);

{

string s = Q->front->data;

Q->front = Q->front->next;

return s;

}

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.12

Let’s verify that the our pointer dereferencing operations are safe. We have

Q->front->data

which entails two pointer dereference. We know is_queue(Q) from the
precondition of the function. Recall:

bool is_queue(queue Q) {

if (Q == NULL) return false;

if (Q->front == NULL) return false;

if (Q->back == NULL) return false;

if (!is_segment(Q->front, Q->back)) return false;

return true;

}

We see that Q->front is okay, because by the first test we know that Q != NULL

is the precondition holds. By the second test we see that both Q->front and
Q->back are not null, and we can therefore dereference them.

We also make the assignment Q->front = Q->front->next. Why does
this preserve the invariant? Because we know that the queue is not empty
(second precondition of deq) and therefore Q->front != Q->back. Because
Q->front to Q->back is a valid non-empty segment, Q->front->next can-
not be null.

An interesting point about the dequeue operation is that we do not ex-
plicitly deallocate the first element. If the interface is respected there cannot
be another pointer to the item at the front of the queue, so it becomes un-
reachable: no operation of the remainder of the running programming could
ever refer to it. This means that the garbage collector of the C0 runtime sys-
tem will recycle this list item when it runs short of space.

6 Stacks with Linked Lists

For the implementation of stacks, we can reuse linked lists and the basic
structure of our queue implementation, except that we read off elements
from the same end that we write them to. We call the pointer to this end
top. Since we do not perform operations on the other side of the stack, we
do not necessarily need a pointer to the other end. For structural reasons,
and in order to identify the similarities with the queue implementation,
we still decide to remember a pointer bottom to the bottom of the stack.
With this design decision, we do not have to handle the bottom of the stack
much different than any other element on the stack. The difference is that

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.13

the data at the bottom of the stack is meaningless and will not be used in
our implementation. A typical stack then has the following form:

	
  
	
  3	
   1	
  2	
  

top	
  

data	
   next	
  

bo.om	
  

Here, 3 is the element at the top of the stack.
We define:

struct list_node {

elem data;

struct list_node* next;

};

typedef struct list_node list;

struct stack_header {

list* top;

list* bottom;

};

typedef struct stack_header* stack;

To test if some structure is a valid stack, we only need to check that
the list starting at top ends in bottom; this is almost identical to the data
structure invariant for queues:

bool is_stack(stack S) {

if (S == NULL) return false;

if (Q->front == NULL) return false;

if (Q->back == NULL) return false;

if (!is_segment(Q->front, Q->back)) return false;

return true;

}

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.14

Popping from a stack requires taking an item from the front of the
linked list, which is much like dequeuing.

elem pop(stack S)

//@requires is_stack(S);

//@requires !stack_empty(S);

//@ensures is_stack(S);

{

elem e = S->top->data;

S->top = S->top->next;

return e;

}

To push an element onto the stack, we create a new list item, set its data
field and then its next field to the current top of the stack – the opposite end
of the linked list from the queue. Finally, we need to update the top field of
the stack to point to the new list item. While this is simple, it is still a good
idea to draw a diagram. We go from

	
  
	
  3	
   1	
  2	
  

top	
  

data	
   next	
  

bo.om	
  

to

	
  
	
  3	
   1	
  2	
  

top	
  

data	
   next	
  

4	
  

bo/om	
  

data	
   next	
  

LECTURE NOTES FEBRUARY 14, 2013



Pointers L9.15

In code:

void push(stack S, elem e)

//@requires is_stack(S);

//@ensures is_stack(S);

{

list* p = alloc(struct list_node);

p->data = e;

p->next = S->top;

S->top = p;

}

This completes the implementation of stacks, which are a very simple
and pervasive data structure.

Exercises

Exercise 1 Consider what would happen if we pop an element from the empty
stack when contracts are not checked in the linked list implementation? When
does an error arise?

Exercise 2 Stacks are usually implemented with just one pointer in the header, to
the top of the stack. Rewrite the implementation in this style, dispensing with the
bottom pointer, terminating the list with NULL instead.

LECTURE NOTES FEBRUARY 14, 2013


	Introduction
	Structs and pointers
	Pointers
	Linked Lists
	Queues with Linked Lists
	Stacks with Linked Lists

