— =

Jury

H OWWW~NOO B WNH

[ary

O OO ~NOOT S WN K

15-122: Principles of Imperative Computation

Recitation 14 Josh Zimmerman

Function pointers
In C, we can get the address of anything, including things in this code section.
So, we can get pointers to functions, normally referred to as function pointers.

Let's consider the following code snippet:

int square(int a) {
return a x a;
}
int addl(int a) {
return a + 1;
}
void map(int (xf)(int k), int A[], size_t n) {
for (int i = 0; i < n; i++) {
Ali] = f(A[i]);
}
}

In this example, we wrote a generic function that applies a given function to every value in an array of
ints. The function can be anything we want it to be, which gives us more flexibility: instead of writing
an "add 1 to all in array" function and a "square all in array" function, we can just write the map function
and pass in a function pointer.

The syntax for function pointers is a bit ugly, but involves the idea of definition as use. In C, we declare
pointers integers in a way that resembles the way we use them. We say *x to use an int pointer, so we
declare the variable like this:

int *x;

Similarly, because we use a function pointer £ by writing (*f) (k), returning an int, where k is an
integer expression, we declare the function pointer variable by writing

int (xf)(int k);

It's possible to use typedefs to make it easier to deal with. (A handy way to remember typedef syntax:
if you remove the typedef from typedef foo bar; then you're declaring a variable named bar of type
foo. For instance, when you do typedef void *elem; if you remove the typedef, you're declaring an
void* named elem.) We can use function pointers to write things like generic searches and sorts:

typedef void« elem;
typedef int (xcompare_fun) (elem x, elem y);
int linsearch_min(elem %A, int lower, int upper, compare_fun elem_compare) {
REQUIRES(A != NULL && 0 <= lower && lower < upper && elem_compare != NULL);
int min_idx = lower;
for (int i = lower + 1; i < upper; i++)
if ((xelem_compare) (A[i], A[min_idx]) < 0)
min_idx = i;
return min_idx;

}

How can we instantiate this to print out the minimum argument passed to a C function?



1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

O~NO OB WN

el el el ol
O ~NOOTL P WNEHFH OO

int compare_strings(elem x, elem y) {
return strcmp((charx)x, (charx)y);
}
int main(int argc, char xxargv) {
if (argc < 2) {
fprintf(stderr, "Not enough arguments\n");
return 1;
}
int min = ;
printf("The lowest—valued command line argument was %s\n", argv[min]);
return 0;
}
Hashtables

The hashtables and other data structures you will use for Lights Out have the property that they are
generic — they use void pointers to represent the client’s types, and the function pointers that make up
the client interface are passed to the client along with the ht_new function.

typedef void xht_elem; // NULL vs. non—NULL is significant
typedef void xht_key; // NULL vs. non—NULL is not significant

typedef struct ht_headerx ht;

ht ht_new(size_t capacity, // Must be > 0
ht_key (xelem_key) (ht_elem e), // Must not be NULL
bool (xkey_equal) (ht_key k1, ht_key k2), // Must not be NULL
size t (xkey_hash) (ht_key k), // Must not be NULL
void (xelem_free) (ht_elem e)); // May be NULL

/* ht_insert(H,e) returns kicked—out element with key of e, if it exists x/
ht_elem ht_insert(ht H, ht_elem e);

/* ht_lookup(H,k) returns NULL if no element with key k exists x/
ht_elem ht_lookup(ht H, ht_key k);

void ht_free(ht H);

1) If we have a struct wcount with two fields, a string word and an unsigned int count, how would
we instantiate a hashtable in order to map from words to counts?

2) If we have a struct twoints with two fields, an unsigned int key and an unsigned int value, how
would we instantiate a hashtable as a map from keys to values? (You'll want to use the address-of
operator to get a pointer to S->key, and then cast that int* to a ht_key.)



