
15-122: Principles of Imperative Computation

Recitation 13 Josh Zimmerman, Nivedita Chopra

Everything has an address!

Well, anything you can name�all variables and functions.

We can use the address of operator, &, to �nd what this address is.

This is useful if we want to modify a variable in place.

Checkpoint 0

1 #include <stdio.h>
2 #include "contracts.h"
3

4 void bad_mult_by_2(int x) {
5 x = x ∗ 2;
6 }
7 void mult_by_2(int∗ x) {
8 REQUIRES(x != NULL);
9 ∗x = ∗x ∗ 2;
10 }
11 int main () {
12 int a = 4;
13 bad_mult_by_2(a);
14 printf("%d\n", a);
15 mult_by_2(&a);
16 printf("%d\n", a);
17 return 0;
18 }

What is the output when this code is run? Why?

switch statements

A switch statement is a di�erent way of expressing a conditional. The general format of this looks like:

1 switch (e) {
2 case c1:
3 // do something
4 break;
5 case c2:
6 // do something else
7 break;
8 // ...
9 default:
10 // do something in the default case
11 break;
12 }

Each ci should evaluate to a constant integer type (this can be of any size, so chars, ints, long long

ints, etc).

For example, consider this function that moves on a board. It takes direction (`l', `r', `u', or `d') and

prints an English description of the direction.

1



1 void print_dir(char c) {
2 switch (c) {
3 case ’l’:
4 printf("Left\n");
5 break;
6 case ’r’:
7 printf("Right\n");
8 break;
9 case ’u’:
10 printf("Up\n");
11 break;
12 case ’d’:
13 printf("Down\n");
14 break;
15 default:
16 fprintf(stderr, "Specify a valid direction!\n");
17 break;
18 }
19 }

The break statements here are important: If we don't have them, we get fall-through, which is often

useful, but can lead to unanticipated results.

Here's some code that takes a positive number at most 10 and determines whether it is a perfect square.

The behavior here is called fall-through.

1 int is_perfect_square(int x) {
2 REQUIRES(1 <= x && x <= 10);
3 switch (x) {
4 case 1:
5 case 4:
6 case 9:
7 return 1;
8 break;
9 default:
10 return 0;
11 break;
12 }
13 }

Checkpoint 1

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(int argc, char∗∗ argv) {
4 if (argc > 1) {
5 int a = atoi(argv[1]);
6 switch (a % 2) {
7 case 0:
8 printf("x is even!\n");
9 default:
10 printf("x is odd!\n");
11 }
12 }
13 return 0;
14 }

What's wrong with this code? How would you �x it?

2



structs that aren't pointers

We've almost always used pointers to structs previously in this class.

We can also just use structs, without the pointer. We set a �eld of a struct with dot-notation, as

follows:

1 #define ARRAY_LENGTH 10
2 struct point {
3 int x;
4 int y;
5 };
6 int main () {
7 struct point a;
8 a.x = 3;
9 a.y = 4;
10 struct point∗ arr = xmalloc(ARRAY_LENGTH ∗ sizeof(struct point));
11 // Initialize the points to be on a line with slope 1
12 for (int i = 0; i < ARRAY_LENGTH; i++) {
13 arr[i].x = i;
14 arr[i].y = i;
15 }
16 }

The notation we've used throughout the semester to access a �eld of a pointer to a struct is p->f. This

is just syntactic sugar for (*p).f.

Casting pointers to ints and signed to unsigned

Casting from pointers to integers and signed values to unsigned values is implementation-de�ned in C.

(That is, C does not mandate the way that compilers should handle these details. For Lab 9, we'll use

the behaviors that GCC de�nes.)

A few details:

The GCC documentation speci�es how casting from pointers to ints works:

http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc/Arrays-and-pointers-implementation.html#

Arrays-and-pointers-implementation

In Lab 9 (the C0 Virtual Machine), we'll provide you with INT(p) and VAL(x) to cast between integers

and pointers.

Make sure to review the lecture notes for more details on casting.

Checkpoint 2

What's wrong with each of these pieces of code?

a)

1 int∗ add_dumb(int a, int b) {
2 int x = a + b;
3 return &x;
4 }

3

http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc/Arrays-and-pointers-implementation.html#Arrays-and-pointers-implementation
http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc/Arrays-and-pointers-implementation.html#Arrays-and-pointers-implementation


b)

1 int main () {
2 int∗ A = xcalloc(10, sizeof(int));
3 for (int i = 0; i < 10 ∗ sizeof(int); i++) {
4 ∗(A + i) = 0;
5 }
6 free(A);
7 return 0;
8 }

c)

1 void add_one(int a) {
2 a = a + 1;
3 }
4 int main() {
5 int x = 1;
6 add_one(x);
7 printf("%d\n", x);
8 return 0;
9 }

d)

1 int main() {
2 int x = 0;
3 if (x = 1)
4 printf("woo\n");
5 return 0;
6 }

e)

1 int main() {
2 char s[] = {‘a’, ‘b’, ‘c’};
3 printf("%s\n", s);
4 return 0;
5 }

f)

1 int main () {
2 char∗ y = "hello!";
3 char∗ x = xmalloc(7 ∗ sizeof(char));
4 strncpy(x, y, strlen(y));
5 printf("%zu\n", strlen(x));
6 free(x);
7 return 0;
8 }

g)

1 int foo(char∗ s) {
2 printf("The string is %s\n", s);
3 free(s);
4 }
5 int main() {
6 char∗ s = "hello";
7 foo(s);
8 return 0;
9 }

4


