
15-122: Principles of Imperative Computation

Recitation 11 Solutions Josh Zimmerman, Arjun Hans, Nivedita
Chopra

Binary search trees � a quick recap

• Binary search trees are an implementation of associative arrays in a tree structure.

• We maintain the invariant (an ordering invariant). For every node in the tree:

(a) All the elements in the left subtree have keys smaller than that of the node

(b) All elements in the right subtree have keys greater than than that of the node

• The asymptotic complexity of insertion/lookup in a BST is O(log n). While this is slower than the
O(1) insertion/lookup time with hash tables, there are some good reasons why we may want to
use BSTs instead:

(a) Hash tables only have O(1) insertion/lookup time if the hashing function has a good key
distribution. Otherwise, if most of the elements hash to a small number of chains, inser-
tion/lookup will slow down to linear time.

(b) Also, hash tables require us to allocate large backbone arrays; a number of these may be
empty throughout the hash table's usage, which wastes memory.

There are some applications in which hash tables are preferable and some in which BSTs are
preferable, so it's a matter of evaluating the speci�c case and deciding which data structure works
better for it.

• One important thing to note is that BSTs are not always balanced, and so we won't necessarily
always have O(log(n)) runtime for the common operations. This is largely dependent on the order
in which the keys are inserted.

Checkpoint 0

Insert the keys 1,2 and 3 in the order 2, 1, 3 and draw the tree formed. Then insert the keys in the order
1,2,3. What do you notice?

Solution: we see that tree is not balanced; it resembles a linked list,which has linear insertion/lookup
time. We'll see how to �x the problem next week when we talk about self-balancing binary trees.

Playing with binary search trees

Let's play around with a binary search tree visualization so we can see how the ordering invariants work
out in practice. We'll be using http://www.cs.usfca.edu/~galles/visualization/BST.html.

Try inserting these keys:
2, 4, 1, 3, 5

Then try deleting 2 and then 4 from the tree.

1

http://www.cs.usfca.edu/~galles/visualization/BST.html


Discussing the code for insertion into the tree

Now let's consider the code for tree_insert. It's a recursive function.

tree* tree_insert(tree* T, elem e)

//@requires is_ordtree(T);

//@requires e != NULL;

//@ensures is_ordtree(\result);

{

if (T == NULL) {

/* create new node and return it */

T = alloc(struct tree_node);

T->data = e;

T->left = NULL;

T->right = NULL;

return T;

}

int r = key_compare(elem_key(e), elem_key(T->data));

if (r == 0) {

T->data = e; /* modify in place */

} else if (r < 0) {

T->left = tree_insert(T->left, e);

} else {

//@assert r > 0;

T->right = tree_insert(T->right, e);

}

return T;

}

Note that in the cases where r < 0 and r > 0 we assign the right and left sub-trees to the result of
calling the function recursively. Also, we need to return T in the case where we enter the case where T

== NULL (an empty tree), since we have no way of modifying the tree that was passed in as an argument.

We can understand tree_insert as follows. Suppose that the element we want to insert is e

(1) If we reach an empty tree (T == NULL), then we just create a new node, set the data to e and return
the node.

(2) Otherwise, we compare the key ek of e to the key nk of the node n we're currently at in the tree.
We then have the following three cases:

(i) If ke and kn are equal, then we just write over the data in the node n with e.

(ii) If ke < kn, then element e belongs in the left-subtree of n. We therefore call tree_insert on
the subtree T->left and insert e somewhere in T->left

(iii) Otherwise, ke < kn, so the element e belongs in the right-subtree of n. We therefore call
tree_insert on the subtree T->right and insert e somewhere in T->right.

2



Checkpoint 1

Recursion on binary search trees can be a tricky concept to master. Here are some practice problems to
help you. Note that some of these problems only rely upon the structure of a BST, while others rely upon
the BST ordering invariant. Your solution should use the struct de�nitions and the client-side functions
we de�ned in class (given below for your reference).

Your solutions should be short (around 10 lines at most). You may also need a helper function to
access the internals of the tree (as we did in bst_insert with tree_insert.

key elem_key(elem e);

int key_compare(key k1, key k2);

struct tree_node {

elem data;

struct tree_node* left;

struct tree_node* right;

};

typedef struct tree_node tree;

struct bst_header {

tree* root;

};

typedef struct bst_header* bst;

(a) Write a function elem bst_max(bst B) that returns the element with the maximum key in a given
BST.

Solution:

// Solution 1: iterative.

elem bst_max(bst B)

//@requires is_bst(B);

{

tree curr = B->root;

if (curr == NULL) return NULL; // Empty tree.

while (curr->right != NULL) {

curr = curr->right;

}

return curr->data;

}

// Solution 2: recursive.

elem tree_max(tree T)

//@requires T != NULL;

{

if (T->right == NULL) return T->data;

return tree_max(T->right);

3



}

elem bst_max(bst B)

//@requires is_bst(B);

{

if (B->root == NULL) return NULL; // Empty tree.

return tree_max(B->root);

}

(b) Write a function int count_leaves(bst B) that counts the number of leaves in a given BST.

Solution:

int count_tree_leaves(tree T) {

if(T == NULL) return 0;

if(T->left == NULL && T->right == NULL) return 1;

return count_tree_leaves(T->left) + count_tree_leaves(T->right);

}

int count_leaves(bst B)

//@requires is_bst(B);

{

return count_tree_leaves(B->root);

}

4


