
15-122: Principles of Imperative Computation

Recitation 8 Josh Zimmerman

Amortized analysis

Amortized analysis lets us consider the runtime behavior of a sequence of operations of an algorithm.

It lets us take a more nuanced view of the runtime of an algorithm: if there's some incredibly rare

operation that takes a long time to do, it doesn't make sense to characterize the entire performance of

the algorithm by that one operation. By using amortized analysis, we can get a more accurate view of

how the algorithm will actually run.

Unbounded arrays

Unbounded arrays are implemented as pointers to struct uba_headers:

1 struct uba_header {
2 int size;
3 int limit;
4 elem[] data;
5 };

We're going to discuss a variation on the UBAs presented in class to give a di�erent example of amortized

analysis and discuss

When implementing unbounded arrays on an embedded device, a programmer is concerned that doubling

the size of the array when we reach its limit may use precious memory resources too aggressively. So she

decides to see if she can increase it by a factor of 3
2 = 1.5 instead, rounding down if the result is not an

integral number.

This means that it won't make sense to have fewer than 2 elements in the array, because

otherwise you might resize the array and get an array that wasn't any bigger. This would need to be

re�ected in the data structure invariant!

We're also going to resize the arrays a little bit earlier (which means we may use a bit more memory

sometimes!) to make sure that we never end up with a size equal to limit.

52	
   12	
   4	
   9	
   34	
   12	
   16	
   44	
  

52	
   12	
   4	
   9	
   34	
   12	
   16	
  

size=7	
   limit=8	
  

size=8	
   limit=12	
  

Make sure you know how to write a data structure invariant for this modi�ed UBA:

1 bool is_uba(struct uba_header∗ U) {
2 if (U == NULL) return false;
3 if (!(1 < U−>limit)) return false;
4 if (!(0 <= U−>size && U−>size < U−>limit)) return false;
5 //@assert \length(A) == U−>limit;
6 return true;
7 }

1



We now carry out the the amortized analysis for this version of unbounded arrays. We'll start right after

we've resized the array, when the size of the array is s and the limit of the array is l = 3s/2. We'll show

that, assuming we start out with some non-zero number of tokens k, the next resizing of the array, from

size l to size l′ = 3l/2 = 9s/4, can be paid for by the cost (in tokens) of the operations that happen

before that resize. (Just assume s is divisible by 4 for the purposes of this questions.)

Most of the operations require us to spend 1 token because we write to the U->data array exactly once.

In addition, we need to reserve 3 tokens for a total amortized cost of 4 tokens.

Starting from a 2/3 full array, if we write into the old array every time, then after l/3 = s/2
insertions we will �ll up the old array completely.

At this point, we have a total of k + 3s/2 tokens, and we need to copy l = 3s/2
tokens into the newly allocated array of size l′ = 3l/2.

After all those copies, we have k tokens left. This is no smaller than k, and we have considered

the worst case, so we will never run out of tokens.

You can try running through this analysis with other resizing factors:

If we triple the size of the array, we still need to reserve 2 tokens for a total amortized cost of 3 tokens.

Starting from a 1/3 full array, if we write into the old array every time, then after 2l/3 = 2s insertions

we �ll up the array. At this point we have k+4s tokens, and we need to copy l = 3s tokens to the newly

allocted array of size 3l. After all these copies we have k + s tokens left. (If we tried to only reserve 1
token, we would end up iwith k − s tokens. If we are allowed to have an amortized cost in fractions of

a token, then it would su�ce to reserve 11
2 tokens for a total amortized cost of 21

2 tokens.)

If we resize the array by a factor of 5/4, we need to reserve 5 tokens for a total amortized cost of 6
tokens. Starting from a 4/5 full array, if we write into the old array every time, then after l/5 = s/4
insertions we �ll up the array. At this point we have k + 5s/4 tokens, and we need to copy l = 5s/4
tokens to the newly allocted array of size 5l/4. After all these copies we have k tokens left.

If we resize the array by a factor of 4/3, we need to reserve 4 tokens for a total amortized cost of 5
tokens. Starting from a 3/4 full array, if we write into the old array every time, then after l/4 = s/3
insertions we �ll up the array. At this point we have k + 4s/3 tokens, and we need to copy l = 4s/3
tokens to the newly allocted array of size 4l/3. After all these copies we have k tokens left.

If we resize the array by a factor of 13/10 = 1.3, we need to reserve 5 tokens for a total amortized

cost of 6 tokens. Starting from a 10/13 full array, if we write into the old array every time, then after

3l/13 = 3s/10 insertions we �ll up the array. At this point we have k+15s/10 = k+3s/2 tokens, and

we need to copy l = 13s/10 tokens to the newly allocted array of size 13l/10. After all these copies

we have k + 2s/10 = k + s/5 tokens left. (If we tried to only reserve 4 tokens instead of 5, we would

end up with k − s/10 tokens at the end. If we are allowed to reserve fractions of a token, then it would

su�ce to reserve 41
3 tokens for a total amortized cost of 51

3 tokens.)

Practice!

Unbounded array insertion � aggregate analysis

Using aggregate analysis, show that adding an element to an unbounded array takes amortized O(1)
time. We'll only count the number of array writes, for simplicity.

2



NOTE: To more formally prove this, we'd need to use mathematical induction, but to make it easier to

understand, this is just the core of the argument.

Consider n insertions to an array with limit n− 1 (the array starts out empty).

Exactly one insertion will take n steps: n− 1 to copy over all n− 1 elements from the small array to the

large array and one to insert the new element.

Every other insertion takes 1 step � we just insert the element.

So, over n insertions, we have a total of (n− 1) ∗ 1 + 1 ∗ (n) = 2n− 1 steps.

2n− 1

n
= 2− 1

n
∈ O(1)

Thus, we have an amortized runtime of O(1) for insertion.

Unbounded array insertion � accounting analysis

Using an accounting analysis, show that adding an element to an unbounded array takes amortized O(1)
time (the array starts out empty).

Again, we'll only be counting array writes.

Assume that the limit is n, and that n > 0 (the analysis can also work when n = 0, but there's an

annoying special case).

NOTE: To more formally prove this, we'd need to use mathematical induction, but to make it easier to

understand, this is just the core of the argument.

When we insert, we need to pay 1 token (this re�ects the cost of inserting into an array). We can also

put two tokens aside. So, we lose 3 tokens for every insertion. Note that this is still a constant cost.

Then, when it comes time to make a new array we can reach into our stash of coins, which now has 2n
tokens, since we've inserted into the array n times and put 2 tokens into the stash for each insertion. To

help pay for the cost of copying elements over, we grab n tokens from the stash and use them. Now our

stash has n tokens left in it. Then, we pay 1 token to insert the new element in the array, and set two

tokens aside in the stash (leaving us with n+ 2 tokens).

On future resizings of the array, we'll have enough tokens since we insert two tokens every time � one

of them will pay to copy the element that was inserted when we got it and the other will pay for copying

one in the �rst half of the array.

In this way, we pay 3 tokens for every insert, which is a constant. So, insertion into the unbounded array

is amortized constant time.

Binary counter

Consider the situation where we have an n-bit binary number. Assume that �ipping a bit (changing it

from 1 to 0, or from 0 to 1) is a constant-time operation.

What is the amortized time complexity of incrementing the number, in terms of n?

Consider incrementing a number repeatedly.

To go from 00 . . . 00︸ ︷︷ ︸
n bits

to 00 . . . 00︸ ︷︷ ︸
n bits

(we're ignoring the case of performing zero increments, since it doesn't

make sense to consider the cost of no operations), we need 2n increments. For example, if n = 2, we

3



go: 00, 01, 10, 11, 00. This is a total of 4 = 22 increments. (I'm assuming the normal rules for integer

over�ow here.)

We'll �ip bit i 2n

2i
times.

The proof of this is by induction on the bit (i).

Base case. The 0th bit is �ipped on every increment. There are 2n increments, and
2n

20
= 2n

Inductive hypothesis. Assume that for some �xed k ∈ N (where k < n − 1), we �ip the kth bit 2n

2k

times.

Inductive step. We wish to show that we �ip bit k + 1 2n

2k+1 times.

To do this, we consider how many times we �ip bit k + 1 in relation to bit k. If bit k is 0 when

it is �ipped for an increment, we do not �ip bit k + 1, and if bit k is 1 when it is �ipped for an

increment, we do �ip bit k + 1. Thus, we �ip bit k + 1 exactly half as much as we �ip bit k, and
so, by the inductive hypothesis, we �ip bit k + 1

2n

2k
∗ 1
2
=

2n

2k+1

times.

So, we �ip bit k 2n

2k
times.

Thus, we have a total of

n−1∑
i=0

(
2n

2i

)
= 2n

n−1∑
i=0

1

2i

= 2n

(
1− (12)

n

1
2

)
= 2n(1− 1

2n
)(2)

= 2n(2− 2

2n
)

= 2n+1 − 2

�ips. However, this was over 2n increments, so we divide and see:

2n+1 − 2

2n
=

2n+1

2n
− 2

2n

= 2− 1

2n−1
∈ O(1)

(The claim about big-O holds because 2− 1
2n−1 < 3 for all n.)

We can also use an accounting analysis to show that n increments will cost O(n) tokens. (And so each

increment costs O(1) token.)

4



Start by putting a token next to each bit. There are n bits, so this costs n tokens to start. Then, for

each increment operation, we pay 2 tokens. For every bit that must �ip from 0 to 1, we simply use the

token sitting next to it to pay for the �ip. Then, for the one bit that must �ip from 1 to 0, we pay for

that using one of tokens we've allocated for this increment operation and put the other token down next

to it for future �ips from 0 to 1.

In this way, we only need to contribute 2 new tokens for each increment operation, and our n increments

only cost O(n) tokens. Thus, each increment has an amortized cost of O(1) tokens.

5


