15-122: Principles of Imperative Computation

Recitation 7 Solutions Josh Zimmerman

Practice!

(Credit for this section goes to CMU alumna Caroline Buckey; it has been updated since by Alex Cappiello
and Rob Simmons.)

Suppose you have the implementation using linked lists shown in lecture. Specifically, you have the
following structs:

1 struct list_node {

2 int data;

3 struct list_nodex next;
4}

5 typedef struct list_node list;
6

7

8

9

struct linkedlist_header {
list* start;
list* end;
10 };
11 typedef struct linkedlist_header linkedlist;

In lecture, we talked about the is_segment (start, end) function that tells us we can start at start,
follow next pointers, and get to end without ever encountering a NULL. (We won’t worry about the
problems with getting is_segment to terminate in this recitation.) A linkedlist is a non-NULL pointer
that captures a reference to both the start and end of a linked list.

1 bool is_linkedlist(linkedlistx L) {

2 if (L == NULL) return false;

3 return is_segment(L—>start, L—>end);

4}

Recall from lecture that we always have one “dummy” node at the end of our linked list segments. Its

fields are uninitialized; it simply ensures that we never need to worry about start or end being null.

Creating a new linked list

Here's the code that creates a new linked list with one non-dummy node. Suppose linkedlist_new(12)
is called. For each of lines 4-9 (inclusive) draw a diagram that shows the state of the linked list after
that line executes. Use X for struct fields that we haven't initialized yet.

1 linkedlistx linkedlist_new(int data)
2 //@ensures is_linkedlist(\result);

34

4 listx p = alloc(struct list_node);

5 p—>data = data;

6 p—>next = alloc(struct list_node);

7 linkedlistx L = alloc(struct linkedlist_header);
8 L—>start = p;

9 L—>end = p—>next;

10 return L;
11 }

Solution:

Solution:

Solution:

Solution:

Solution:

Solution:

— data next

— data next

S >

— data next data next

{n [<D<

— data next data next

N ===

start end

— data next data next

N ===

start end

— data next data next
|

/

start end

Adding to the end of a linked list

We can add to either the start or the end of a linked list. The following code adds a new list node to
the end.
1 void add_end(linkedlist* L, int x)

2 //@requires is_linkedlist(L);
3 //@ensures is_linkedlist(L);

4 {

5 listx p = alloc(struct list_node);
6 L—>end—>data = x;

7 L—>end—>next = p;

8 L—>end = p;

9}

Suppose add_end (L, 3) is called on a linked list L that contains before the call, from start to end, the
sequence (1, 2). Draw the state of the linked list after each of lines 5 - 8 (inclusive). Include the list
struct separately before it has been added to the linked list.

data next data next data

L | =2 |

next

data

next
start end

Solution:
6. L{ o~ data next data next data next
x|3 L | 2 | 3 <]
Pl
data next
start end
Solution:
7. L{ o data next data next data next
x|3 L | 2 | 3 ||
Pl
data next
start end
Solution:
8 L{ o~ data next data next data next
x L | =2 [=z |y]
p
data next
start end
Solution:

Adding to the start of a linked list

With the previous example in mind, can you think about what code would be necessary if we instead
wanted to add a new list node to the start of a linked list?
1 void add_start(linkedlist* L, int x)

2 //@requires is_linkedlist(L);
3 //@ensures is_linkedlist(L);

4 {

5 listx p = alloc(struct list_nodes);
6 p—>data = x;

7 p—>next = L—>start;

8 L—>start = p;

9}

Removing the first item from a linked list

This is the code that removes the first element from a linked list. If it were not for the second precondition,
we might remove the dummy node! This would almost certainly cause the postcondition to fail.

1 int remove(linkedlistx* L)

2 //@requires is_linkedlist(L);

3 //@requires L—>start != L—>end;
4 //@ensures is_linkedlist(L);

5

6 int x = L—>start—>data;

7 L—>start = L—>start—>next;
8 return x;

91}

Suppose remove (L) is called on a linked list L that contains before the call, from start to end, the
sequence (4, 5, 6). Draw the state of the linked list after lines 6 and 7 execute. Include an indication
of what data the variable x holds.

6.
L o~ data next data next data next data next
R = =
Solution: start end
7.
L| o~ data next data next data next data next
x4 4 [=5 [s [
Solution: start end

