
15-122: Principles of Imperative Computation

Recitation 6 Solutions Nivedita Chopra, Josh Zimmerman

Stacks and Queues

Stacks are a LIFO (last in, �rst out) data structure. This is just like ordinary references to stack e.g. a
stack of books.

(Picture courtesy of Vegpu�/Wikipedia)

Here is the interface for stacks, as discussed in lecture:

1 stack stack_new();
2 bool stack_empty(stack S);
3 void push(stack S, string x);
4 string pop(stack S)
5 /∗@requires !stack_empty(S); @∗/ ;

Queues are a FIFO (�rst in, �rst out) data structure. This is just like ordinary references to a queue e.g
the queue (or line) at package pickup in the UC.

(Picture courtesy of Wikipedia)

Here is the interface for queues, as discussed in lecture:

1 queue queue_new();
2 bool queue_empty(queue Q);
3 void enq(queue Q, string x);
4 string deq(queue Q)
5 /∗@requires !queue_empty(Q); @∗/ ;

1

http://en.wikipedia.org/wiki/File:Data_Queue.svg

Checkpoint 0

Write a function to reverse a queue, using only the functions from the interface.
Below is the general structure of this function. You may not need to �ll in all the blanks.

1 /∗ Assume that you have data types stack and queue as described in lecture ∗/
2 void reverse(queue Q)
3 {
4 stack S = stack_new(); //Hint : Allocate a temporary data structure
5 while(!queue_empty(Q))
6 {
7 string temp = deq(Q);
8 push(S, temp);
9 }
10 while(!stack_empty(S))
11 {
12 string temp = pop(S);
13 enq(Q, temp);
14 }
15 }

Checkpoint 1

Why did we NOT need contracts in the function above?

Solution: Since we are clients using a given stack/queue interface, we can assume that, as long as
we respect the interface, all stacks/queues are valid and that any operations involving them (which are
allowed by the interface) are safe.

Checkpoint 2

Write a function to calculate the size of a stack without allocating any new data structures. At the
end of the function, the stack must be unmodi�ed (Hint : You will need to modify the stack within the
function, but must ensure it is the same at the end)

Solution:

1 //recursive without allocating data structures
2 int stack_size(stack S)
3 //@requires is_stack(S);
4 //@ensures
5 {
6 if (stack_empty(S)) return 0;
7 string x = pop(S);
8 int i = 1 + stack_size(S);
9 push(S, x);
10 return i;
11 }

Clac

clac is a relatively simple post�x-based programming language. As we read in numbers from the input

2

(which we represent as a queue), we push operands onto a stack and act on them based on the instructions
that are in the queue.

Here's an example of clac processing some input (you can get this yourself when working on the clac
assignment by running clac-ref).

$ clac-ref -trace

Clac top level

clac>> 5 9 2 7 3 + - / dup * %

stack || queue

|| 5 9 2 7 3 + - / dup * %

5 || 9 2 7 3 + - / dup * %

5 9 || 2 7 3 + - / dup * %

5 9 2 || 7 3 + - / dup * %

5 9 2 7 || 3 + - / dup * %

5 9 2 7 3 || + - / dup * %

5 9 2 10 || - / dup * %

5 9 -8 || / dup * %

5 -1 || dup * %

5 -1 -1 || * %

5 1 || %

0 ||

0

What's happening here? Well, we push all of the numbers onto the stack after reading them out of the
queue. Then, we get to the +, so we pop two items (the 7 and the 3) o� of the stack, add them, and
push their sum, 10, back on. Next, we get to the -, pop o� the 2 and 10 and subtract them, and get -8,
which we push on to the stack. Then, we get to the /. We pop 9 and -8 and divide them. 9/-8 rounds
to -1, so we push that onto the stack. Next, we execute the dup, which simply makes the top element
of the stack appear twice. We get to the *, which multiplies the top two elements, giving us 1. Finally,
we get to the %. 5 % 1 == 0, so we push 0. Then, we're out of instructions, so we end and pop the
top item o� of the stack and print it.

A common source of confusion with clac is if statements and else statements.

When we get to an if statement, we pop the top item o� of the stack. If it is 0, we skip the next two

tokens in the queue � we just ignore them. Otherwise (if it's non-zero), we continue processing tokens
as normal.

When we get to an else statement, we always skip the next token in the queue.

So, why are these if/else statements? Let's take a look at some clac code

NOTE: In clac code below, we're using x it to mean any arbitrary int � you should
�ll in an int, like 1, -1, 0, etc, if you're actually running the code.

3

$ clac-ref -trace

Clac top level

clac>> 0 if 2 else 3

stack || queue

|| 0 if 2 else 3

0 || if 2 else 3

|| 3

3 ||

3

clac>> 1 if 2 else 3

stack || queue

3 || 1 if 2 else 3

3 1 || if 2 else 3

3 || 2 else 3

3 2 || else 3

3 2 ||

2

Next, let's write a simple clac program: one that calculates absolute value. We can de�ne |x| as follows:

|x| =

{
x ∗ 1 if x ≥ 0

x ∗ −1 if x < 0

So, if x is less than 0, we want to multiply it by −1 and otherwise we want to multiply it by 1. If we run
the clac command x 0 <, then it will result in 1 being on the top of the stack if x < 0 and 0 being on
the top of the stack otherwise.

We eventually want to multiply by either 1 or -1, so we should push the appropriate one of them onto
the stack: If x < 0 we multiply by -1, otherwise we multiply by 1.

So, we add if -1 else 1 to our command. Now we have

x 0 < if -1 else 1

This says �if x < 0, push -1 onto the stack. Otherwise, push 1 onto the stack.� This works because
when x 0 < evaluates to 0 (so x ≥ 0), we ignore the tokens -1 and else, so we just push 1 onto the
stack. If x 0 < evaluates to 1 (so x < 0), then we push -1 onto the stack and ignore the token 1.

Next, we want to multiply by x, so we add * to the end:

x 0 < if -1 else 1 *

This doesn't work, though! We popped x o� of the stack when we did the comparison. If we run the
above command, we get:

Error: Error: not enough elements on stack

So, we need to duplicate x before we compare, so we can still use it later:

x dup 0 < if -1 else 1 *

That will compute the absolute value of x.

4

