
Lecture Notes on
Search in Graphs

15-122: Principles of Imperative Computation
Frank Pfenning, André Platzer, Rob Simmons, Penny Anderson

Lecture 23
June 23, 2014

1 Introduction

In this lecture we introduce graphs. Graphs provide a uniform model for
many structures, for example, maps with distances or Facebook relation-
ships. Algorithms on graphs are therefore important to many applications.
They will be a central subject in the algorithms courses later in the curricu-
lum; here we only provide a very basic foundation for graph algorithms.

With respect to our learning goals we will look at the following notions.

Computational Thinking: Implicit and explicit graphs

Algorithms and Data Structures: Adjacency matrices and adjacency lists;
depth-first and breadth-first search

Programming: Flexible array members of structs; recursion versus itera-
tion using an explicit stack.

2 Paths in Graphs

We start with undirected graphs which consist of a set V of vertices (also
called nodes) and a set E of edges, each connecting two different vertices.
In particular, these graphs have no edges from a node back to itself. A
graph is connected if we can reach any vertex from any other vertex by
following edges in either direction. In a directed graph edges provide a con-
nection from one node to another, but not necessarily in the opposite direc-
tion. More mathematically, we say that the edge relation between vertices is

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.2

symmetric for undirected graphs. In this lecture we only discuss undirected
graphs, although directed graphs also play an important role in many ap-
plications.

The following is a simple example of a connected, undirected graph
with 5 vertices (A,B,C,D,E) and 6 edges (AB, BC, CD, AE, BE, CE).

D 

E 

C B 

A 

A path in a graph is a sequence of vertices where each vertex is connected
to the next by an edge. That is, a path is a sequence

v0, v1, v2, v3, . . . , vl

of some length l ≥ 0 such that there is an edge from vi to vi+1 in the graph
for each i < l. For example, all of the following are paths in the graph
above:

A−B − E − C −D
A−B −A
E − C −D − C −B
B

The last one is a special case: The length of a path is given by the number of
edges in it, so a node by itself is a path of length 0 (without following any
edges). Paths always have a starting vertex and an ending vertex, which
coincide in a path of length 0. We also say that a path connects its end-
points.

The graph reachability problem is to determine if there is a path connect-
ing two given vertices in a graph. If we know the graph is connected, this
problem is easy since one can reach any node from any other node. But we
might refine our specification to request that the algorithm return not just
a boolean value (reachable or not), but an actual path. At that point the
problem is somewhat interesting even for connected graphs. In complexity
theory it is sometimes said that a path from vertex v to vertex w is a certifi-
cate or explicit evidence for the fact that vertex w is reachable from another

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.3

vertex v. It is easy to check whether the certificate is valid, since it is easy
to check if each node in the path is connected to the next one by an edge. It
is more difficult to produce such a certificate.

For example, the path

A−B − E − C −D

is a certificate for the fact that vertex D is reachable from vertex A in the
above graph. It is easy to check this certificate by following along the path
and checking whether the indicated edges are in the graph.

In most of what follows we are not concerned with finding the path, but
only with determining whether one exists.

3 Implicit Graphs

There are many, many different ways to represent graphs. In some appli-
cations they are never explicitly constructed but remain implicit in the way
the problem was solved. One such example was peg solitaire. The vertices
of the graph implicit in this problem are board configurations. There is an
edge from A to B if we can make a move in configuration A to reach con-
figuration B. Note that this implicit graph is actually a directed graph since
the game does not allow us to undo a move we just made. The classical
reachability question here would be if from some initial configuration we
can reach a given final configuration. We actually solved a related ques-
tion, namely if we can reach any of a number of alternative configurations
(those with exactly one peg) from a given initial configuration. We win the
game if we can reach any of those configurations with a single peg.

The reason why we did not explicitly construct the full graph is that
for standard boards it is unreasonably large – there are too many reachable
configurations. Instead, we incrementally construct nodes in the implicit
graph as we search for a solution in the hope we can find a solution without
ever generating all nodes. In some examples (like the standard English
board), this hope was justified if we were lucky enough to pick a good
move strategy. To discover that a board had no solution, however, we still
had to visit every reachable configuration. Just because we have 3 pegs
remaining with one attempt of trying to solve the board does not mean we
could not have been more successful if we had moved the pegs around in
a different way.

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.4

4 Explicit Graphs and a Graph Interface

Sometimes we do want to represent a graph as an explicit set of edges and
vertices and in that case we need a graph datatype. In the C code that
follows, we’ll refer to our vertices with unsigned integers. A minimal in-
terface for graphs would allow us to create and free graphs, check whether
an edge exists in the graph, and add a new edge to the graph.

typedef unsigned int vertex;

typedef struct graph_header* graph;

graph graph_new(unsigned int numvert);

void graph_free(graph G);

unsigned int graph_size(graph G);

// number of vertices in the graph

bool graph_hasedge(graph G, vertex v, vertex w);

//@requires v < graph_size(G) && w < graph_size(w);

void graph_addedge(graph G, vertex v, vertex w);

//@requires v < graph_size(G) && w < graph_size(w);

//@requires !graph_hasedge(G, v, w);

We use the C0 notation for contracts on the interface functions here. Even
though C compilers do not recognize the //@requires contract and will
simply discard it as a comment, the contract still serves an important role
for the programmer reading the program. For the graph interface, we de-
cide that it does not make sense to add an edge into a graph when that edge
is already there, hence the second precondition.

With this minimal interface, we can create a graph for our running ex-
ample (letting A = 0, B = 1, and so on).

graph G = graph_new(5);

graph_addedge(G, 0, 1);

graph_addedge(G, 1, 2);

graph_addedge(G, 2, 3);

graph_addedge(G, 0, 4);

graph_addedge(G, 1, 4);

graph_addedge(G, 2, 4);

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.5

5 Adjacency Matrices

There are two simple ways to implement the graph interface. One way is
to represent the graph as a two-dimensional array that represents its edge
relation. We can check if there is an edge from B (= 1) to D (= 3) by looking
for a checkmark in row 1, column 3. In an undirected graph, the top-right
half of this two-dimensional array will be a mirror image of the bottom-left,
because the edge relation is symmetric.

✔	
 ✔	

✔	
 ✔	
 ✔	

✔	
 ✔	
 ✔	

✔	

✔	
 ✔	
 ✔	

A	

B	

C	

D	

E	

A	
 	
 	
 	
 	
 B	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 D	
 	
 	
 	
 E	

This representation of a graph is called an adjacency matrix, because it is a
matrix that stores which nodes are neighbors.

6 Adjacency Lists

The other classic representation of a graph is as an adjacency list. In an
adjacency list representation, we have a one-dimensional array that looks
much like a hash table. Each vertex has a spot in the array, and each spot
in the array contains a linked list of all the other vertices connected to that
vertex. Our running example would look like this as an adjacency list:

A	

B	

C	

D	

E	

B	
 E	

A	
 C	

B	
 D	
 E	

E	

C	

A	
 B	
 C	

Adjacenct lists and adjacency matrices have different tradeoffs in the
time and space it takes to perform operations. If the matrix would be sparse,
where there are many vertices and few edges, it usually makes more sense
to use an adjacency list. If it would be dense, where there are many edges,
it may be more efficient to use an adjacency matrix.

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.6

If we do use an adjacency list representation, it will often make sense to
extend the interface to graphs to give the client access to this linked list of
adjacent edges, to represent the neighbors of a given node.

typedef struct adjlist_node adjlist;

struct adjlist_node {

vertex vert;

adjlist *next;

};

/* Returns a linked list of the neighbors of vertex v.

* This adjacency list is owned by the graph and should

* not be modified by the user.

* @requires(v < graph_size(G)) */

adjlist *graph_connections(graph G, vertex v);

One way to implement the adjacency list version of graphs is as a pointer
to a special kind of C struct, a struct with a flexible array member, i.e. its last
field is an array whose length is only specified at runtime, not at the time of
declaring the type of the struct. This is a struct with two fields: the first is
an unsigned integer representing the actual size, and the second is an array
of adjacency lists.

struct graph_header {

unsigned int size;

adjlist *adj[]; // Flexible array member!

};

The array adj of adjacency lists will be contiguous in memory with the
size field.

Usually, structs aren’t allowed to contain arrays directly, only pointers,
but C99 allows the last member of a struct to be an array of unknown size.
The array will be contiguous in memory with the earlier struct elements.
(Another example of the use of flexible array members is the ”bare” C0
runtime’s implementation of C0 arrays. See C_IDIOMS.txt in the Lab 8
starter folder.)

The sizeof operator on a struct with a flexible array member returns the
size the struct would have if the array had length 0.

To allocate a struct with a flexible array member, you request space for
the struct itself plus however much space you want for the array. For in-
stance:

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.7

struct graph_header *G =

xcalloc(1, sizeof(struct graph_header) + 5);

allocates enough space for the adjacency-list representation of a graph with
five nodes. The fields can be accessed as usual using struct-pointer nota-
tion:

G->size = 5;

...G->adj[0]...

We allocate this adjacency list using xcalloc to make sure that it is ini-
tialized to an empty array. Behind the scenes xcalloc just multiplies its two
arguments; because we are allocating a struct with a flexible array member,
we pass in 1 for the first argument and explicitly figure out the desired size
of the array for the second argument:

graph graph_new(unsigned int size) {

size_t adj_size = sizeof(adjlist*) * size;

graph G = xcalloc(1, sizeof(struct graph_header) + adj_size);

G->size = size;

ENSURES(is_graph(G));

return G;

}

7 Depth-First Search

The first algorithm we consider for determining if one vertex is reachable
from another is called depth-first search.

Let’s try to work our way up to this algorithm. Assume we are trying to
find a path from u to w. We start at u. If it is equal to w we are done, because
w is reachable by a path of length 0. If not we pick an arbitrary edge leaving
u to get us to some node v. Now we have “reduced” the original problem
to the one of finding a path from v to w.

The problem here is of course that we may never arive at w even if there
is a path. For example, say we want to find a path from A to D in our earlier

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.8

example graph.

D 

E 

C B 

A 

We can go A − B − E − A − B − E − · · · without ever reaching D (or we
can go just A−B −A−B − · · ·), even though there exists a path.

We need to avoid repeating nodes in the path we are exploring. A cycle
is a path of length 1 or greater that has the same starting and ending point.
So another way to say we need to avoid repeating nodes is to say that we
need to avoid cycles in the path. We accomplish this by marking the nodes
we have already considered so when we see them again we know not to
consider them again.

Let’s go back to the earlier example and play through this idea while
trying to find a path from A to D. We start by marking A (indicated by hol-
lowing the circle) and go to B. We indicate the path we have been following
by drawing a double-line along the edges contained in it.

D	

E	

C	
 B	

A	
 D	

E	

C	
 B	

A	
 D	

E	

C	
 B	

A	
 D	

E	

C	
 B	

A	

When we are at B we mark B and have three choices for the next step.

1. We could go back to A, but A is already marked and therefore ruled
out.

2. We could go to E.

3. We could go to C.

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.9

Say we pick E. At this point have again three choices. We might consider
A as a next node on the path, but it is ruled out because A has already been
marked. We show this by dashing the edge from A to E to indicate it was
considered, but ineligible. The only possibility now is to go to C, because
we have been at B as well (we just came from B).

D	

E	

C	
 B	

A	
 D	

E	

C	
 B	

A	

From C we consider the link to D (before considering the link to B) and we
arrive at D, declaring success with the path

A−B − E − C −D

which, by construction, has no cycles.
There is one more consideration to make, namely what we do when we

get stuck. Let’s reconsider the original graph

D 

E 

C B 

A 

and the goal to find a path from E to B. Let’s say we start E − C and then
C −D. At this point, all the vertices we could go to (which is only C) have
already been marked! So we have to backtrack to the most recent choice
point and pursue alternatives. In this case, this could be C, where the only
remaining alternative would be B, completing the path E −C −B. Notice
that when backtracking we have to go back to C even though it is already
marked.

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.10

Depth-first search is characterized not only by the marking, but also
that when we get stuck we always return to our most recent choice and
follow a different path. When no other alternatives are available, we back-
track further. Let’s consider the following slightly larger graph, where we
explore the outgoing edges using the alphabetically last label first. We will
trace the search for a path from A to B.

D	

E	

C	
 B	

A	

F	

G	

We write the current node we are visiting on the left and on the right a
stack of nodes we have to return to when we backtrack. For each of these
we also remember which choices remain (in parentheses). We annotate
marked nodes with an asterisk, which means that we never pick them as
the next node to visit.

For example, at step 5 we do not consider E∗ but go to D instead. We
backtrack when no unmarked neighbors remain for the current node. We
are keeping the visited nodes on a stack so we can easily return to the most
recent one. The stack elements are separated by | and the lists of neighbors
are wrapped in parentheses (B,A∗) etc.

Step Current Neighbors Stack Remark
1 A (E,B)
2 E (C,B,A∗) A∗ (B)
3 C (G,E∗, D) E∗ (B,A∗) | A∗ (B)
4 G (C∗) C∗ (E∗, D) | E∗ (B,A∗) | A∗ (B) Backtrack
5 D (F,C∗) C∗ () | E∗ (B,A∗) | A∗ (B)
6 F (D∗) D∗ (C∗) | C∗ () | E∗ (B,A∗) | A∗ (B) Backtrack
7 B (A∗) E∗ (B,A∗) | A∗ (B) Goal Reached

We can easily write this code recursively, letting the call stack keep track
of everything we need for backtracking; each dfs function body has its own

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.11

linked list for the adjacency list. This is the way we wrote the solver for Peg
Solitaire; the list of possible moves corresponds to the adjacency list.

bool dfs(graph G, bool *mark, vertex start, vertex target) {

REQUIRES(G != NULL && mark != NULL);

REQUIRES(start < graph_size(G) && target < graph_size(G));

if(start == target) return true;

mark[start] = true;

for(adjlist *L = graph_connections(G, start); L != NULL; L = L->next) {

if(!mark[L->vert]) {

mark[L->vert] = true;

if(dfs(G, mark, L->vert, target)) return true;

}

return false;

}

8 Depth-First Search with an explicit stack

When scrutinizing the above example, we notice that the sophisticated data
structure of a stack of nodes with their adjacency lists was really quite un-
necessary for DFS. The recursive implementation is simple and elegant, but
its effect is to make the data management more complex than necessary: all
we really need for backtracking is a stack of nodes that have been seen but
not yet considered. It’s not necessary to keep track of the neighbor relation-
ships between them.

This can all be simplified by making the stack explicit. In that case there
is a single stack with all the nodes on it that we still need to look at.

Step Current Neighbors New stack
0 (A∗)
1 A∗ (E,B) (E∗, B∗)
2 E∗ (C,B∗, A∗) (C∗, B∗)
3 C∗ (G,E∗, D) (G∗, D∗, B∗)
4 G∗ (C∗) (D∗, B∗)
5 D∗ (F,C∗) (F ∗, B∗)
6 F ∗ (D∗) (B∗)
7 B∗ (E∗, A∗) ()

bool dfsearch(graph G, vertex source, vertex target) {

REQUIRES(source < graph_size(G) && target < graph_size(G));

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.12

stack S = stack_new();

unsigned int size = graph_size(G);

bool mark[size];

for(unsigned int i = 0; i < size; i++)

mark[i] = false;

push(S, (void*)(uintptr_t)source);

mark[source] = true;

while(!stack_empty(S)) {

vertex v = (vertex)(uintptr_t)pop(S);

printf("Visiting %d\n", v);

if (v == target) {

stack_free(S, NULL);

return true;

}

for(adjlist *L = graph_connections(G, v); L != NULL; L = L->next) {

if(!mark[L->vert]) {

push(S, (void*)(uintptr_t)L->vert);

mark[L->vert] = true;

}

}

}

stack_free(S, NULL);

return false;

}

We mark the starting node and push it on the stack. Then we iteratively
pop the stack and examine each neighbor of the node we popped. If the
neighbor is not already marked, we push it on the stack to make sure we
look at it eventually.

9 Breadth-First Search

The iterative DFS algorithm managed its agenda, i.e., the list of nodes it
still had to look at, using a stack. But there’s no reason to insist on a stack
for that purpose. What happens if we replace the stack by a queue? All
of a sudden, we will no longer explore the most recently found neighbor

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.13

first as in depth-first search, but, instead, we will look at the oldest neigh-
bor first. This corresponds to a breadth-first search where you explore the
graph layer by layer. So BFS completes a layer of the graph before pro-
ceeding to the next layer. The code for that and many other interesting
variations of graph search can be found on the web page.

Here’s an illustration using our running example of search for a path
from A to B in the graph

D	

E	

C	
 B	

A	

F	

G	

Step Current Neighbors New queue
0 (A∗)
1 A∗ (E,B) (E∗, B∗)
2 E∗ (B∗, A∗) B∗)
3 B∗ (E∗, A∗) ()

We find the path much faster this way. But this is just one example. Try
to think of another search in the same graph that would cause breadth-first
search to examine more nodes than depth-first search would.

The code looks the same as our iterative depth-first search, except for
the use of a queue instead of a stack. Therefore we do not include it here.
You could write it yourself, and if you have difficulty, you can find it in the
code folder that goes with this lecture.

10 Conclusion

Breadth-first and depth-first search are the basis for many interesting algo-
rithms as well as search techniques for artificial intelligence.

One potentially important observation about breadth-first versus depth-
first search concerns search when the graph remains implicit, for instance
in game search. In this case there might be infinite paths in the graph. Once
embarked on such a path depth-first search will never backtrack, but will

LECTURE NOTES JUNE 23, 2014

Search in Graphs L23.14

pursue the path endlessly. Breadth-first search, on the other hand, since
it searches layer by layer, is not subject to this weakness (every node in a
graph is limited to a finite number of neighbors). In order to get some ben-
efits of both techniques, a technique called iterative deepening is sometimes
used.

LECTURE NOTES JUNE 23, 2014

	Introduction
	Paths in Graphs
	Implicit Graphs
	Explicit Graphs and a Graph Interface
	Adjacency Matrices
	Adjacency Lists
	Depth-First Search
	Depth-First Search with an explicit stack
	Breadth-First Search
	Conclusion

