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1 Introduction

Using void* to represent pointers to values of arbitrary type, we were able
to implement generic stacks in that the types of the elements were arbitrary
(see Section 9 of Lecture 19). The main remaining restriction was that they
had to be pointers. Generic queues or unbounded arrays can be imple-
mented in an analogous fashion. However, when considering, say, hash
tables or binary search trees, we run into difficulties because implementa-
tions of these data structures require operations on data provided by the
client. For example, a hash table implementation requires a hash function
and an equality function on keys. Similarly, binary search trees require a
comparison function on keys with respect to an order. In this lecture we
show how to overcome this limitation using function pointers.

2 The Hash Table Interface Revisited

Recall the client-side interface for hash tables, online here. The client must
provide a type elem (which must be a pointer), a type key (which was arbi-
trary), a hash function on keys, an equality function on keys, and a function
to extract a key from an element. We write ___ while a concrete type must
be supplied there in the actual file.

/5K sk ok sk ok sk ok sk ok sk ok s ok 3 ok 3k ok K ok sk ok ok ok sk ok sk ok sk ok k ok k ok /

/* Hash table client-side interface */
/et ke ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk ok ok ko ok /
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typedef _* elem;

typedef ___ key;

int hash(key k, int m)
//@requires m > 0;
//Q@ensures 0 <= \result && \result < m;

bool key_equal(key k1, key k2);

key elem_key(elem e)
//@requires e != NULL;

’

We were careful to write the implementation so that it did not need to know
what these types and functions were. But due to limitations in C0, we could
not obtain multiple implementations of hash tables to be used in the same
application, because once we fix elem, key, and the above three functions,
they cannot be changed.

Given the above the library provides a type ht of hash tables and means
to create, insert, and search through a hash table.

/*************************************/

/* Hash table library side interface */
/ otk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok /

typedef struct ht_header* ht;

ht ht_new(int capacity)

//@requires capacity > 0;

elem ht_lookup(ht H, key k); /* 0(1) avg. */
void ht_insert(ht H, elem e) /* 0(1) avg. */
//@requires e != NULL;

b

3 Generic Types
Since both keys and elements are defined by the clients, they turn into

generic pointer types when we implement a truly generic structure in C.
We might try the following in a file ht . h.
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#include <stbool.h>
#include <stdlib.h>

#ifndef _HASHTABLE_H_
#define _HASHTABLE_H_

typedef void *ht_elem;
typedef void *ht_key;

/* Hash table interface */
typedef struct ht_header *ht;

ht ht_new (size_t capacity);
void ht_insert(ht H, ht_elem e);
ht_elem ht_lookup(ht H, ht_key k);

#endif

We use type definitions instead of writing voidx in this interface so the role
of the arguments as keys or elements is made explicit (even if the compiler
is blissfully unaware of this distinction). We write ht_elem now in the C
code instead of elem to avoid clashes with functions of variables of that
name.

However, this does not yet work. Before you read on, try to think about
why not, and how we might solve it
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4 Function Pointers

The problem with the approach in the previous section is that the imple-
mentation of hashtables must call the functions elem_key, key_equal, and
hash. Their types would now involve voidx but in the environment in
which the hash table implementation is compiled, there can still only be
one of each of these functions. This means the implementation cannot be
truly generic. We could not even use two hash tables with different element
types simultaneously this way, without copying code and renaming things.
(This actually happened with stacks in the Clac programming assignment,
if you recall: we had the type istack, stacks of ints, as well as the type
gstack, stacks of queues of strings.)

The underlying issue that we are trying to solve in this lecture is a deep
one: how can a language support generic implementations of data struc-
tures that accommodate data elements of different types. The name poly-
morphism derives from the fact that data take on different forms for different
uses of the same data structure. Sophisticated mechanisms to support poly-
morphism have been developed for modern high-level languages like Java
and ML. Here we will look at a simple mechanism, the function pointer. In
combination with void pointers and header files, function pointers give us
the ability to write generic implementations of data structures. We use void
pointers to pass around generic references to data, and function pointers to
allow the client to specify to the library how to handle that data.

Because the client knows what these functions should be, it can define
them, but must somehow communicate the definitions to the library. The
way the client does this is by passing the address of a defined function to the
library, taking advantage of the fact that the implementation of a function
is stored in memory like everything else in C, and therefore a function has
an address. These addresses are passed from client to library as pointers to
functions.

Leaving generic hash tables aside for a moment, we will use a simple
example of sorting to demonstrate this. In C, we can write an integer sort-
ing function that takes an array of integers, a lower bound, and an upper
bound:

void sort(int* A, int lower, int upper);

We cannot make this generic by simply changing int* to void** (an array
of void pointers), because we have to be able to compare array elements to
sort them.

LECTURE NOTES JUNE 18, 2014



Generic Data Structures L20.5

A comparison function, as we have seen, takes two elements and re-
turns a negative number if the first element is smaller, zero if they are equal,
and a positive number if the first element is bigger. So the comparison func-
tion for generic void* elements has the following signature:

int compare(void* x, void* y);

If we want to compare strings (which have C type charx*), we can use the
strcmp function from the string library <string.h>:

#include <string.h>
int string_compare(void* sl, voidx s2) {
return strcmp((char*)sl, (char*)s2);

}

We can get a pointer to this function with the address-of operator by writing
&string_compare. If cmp is a pointer obtained in this way, we can use it
to compare two strings by writing (*cmp) ((void*)"hi", (voidx*)"yo").
Note that when we write (*xcmp), we are dereferencing the function pointer
to get at the actual function!

Generic client functions like this comparison function must be used
carefully — if x and y are pointers to integers, then the result of calling
string_compare((void*)x, (void*)y) is undefined. This is an easy mis-
take to make.

What is the type of a pointer to the function string_compare? In other
words, how would we define cmp? The answer will initially seem a bit odd.
In C, we define cmp by writing

int (*cmp) (void* el, void* e2) = &string_compare;

The best way to make sense of this is to think about declarations in C as
being pattern matching against the way the declared variables will be used.
We tell cmp what type it is by mimicking the way it is used, and we use the
function pointer cmp by writing (*cmp) (e1,e2), which produces an integer
given the void pointers el and e2.

It may be simpler to use a typedef to define the type compare_fun. Ina
typedef, we put the defined type where we would put the declared variable
name in a declaration, so we write

typedef int (*compare_fun) (void* el, voidx* e2);
With this type definition, we can declare the generic type of sorting

functions in sort . h:
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void sort(elem* A, int lower, int upper, compare_fun compare);

where elem is defined as void* for readability puruposes and we can use
an implementation of this sorting function to sort an array of void* where
the elements are actually strings:

void** S = xcalloc(4, sizeof(voidx));
S[0] = (voidx*)"pancake";

S[1] = (voidx)"waffle";
S[2] = (voidx)"toast";
S[3] = (void*)"juice";

sort(S, 0, 4, &string_compare) ;

The sorting library doesn’t know, and doesn’t need to know, that the void
pointers are actually character arrays (that is, C strings). All it needs to
know is that the comparison function we passed to the library knows what
these pointers are and is able to compare them.

5 Generic Operations via Function Pointers

We now return to our hash table implementation problem. With function
pointers, we can make the hash table implementation truly generic by al-
lowing the client to provide pointers to the functions for extracting, com-
paring, and hashing keys.

But where do we pass them? We could pass all three to ht_insert and
ht_lookup, where they are actually used. However, it is awkward to do this
on every call. We notice that for a particular hash table, all three functions
should be the same for all calls to insert into and search this table, because a
single hash table stores elements of the same type and key. We can therefore
pass these functions just once, when we first create the hash table, and store
them with the table!

This gives us the following interface (in file ht . h):

#include <stbool.h>
#include <stdlib.h>

#ifndef _HASHTABLE_H_
#define _HASHTABLE_H_

typedef void* ht_key;
typedef void* ht_elem;
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/* Hash table interface */
typedef struct ht* ht;
ht ht_new (size_t capacity,
ht_key (*elem_key) (ht_elem e),
bool (*key_equal) (ht_key k1, ht_key k2),
unsigned int (*key_hash) (ht_key k, unsigned int m));
void ht_insert(ht H, ht_elem e);
ht_elem ht_lookup(ht H, ht_key k);
void ht_free(ht H, void (*elem_free) (ht_elem e));

#endif

We have added the function ht_free to the interface. The latter takes a
pointer to the function that frees elements stored in the table.

We have made some small changes to exploit the presence of unsigned
integers (in key_hash) and the size_t type (also unsigned) to provide more
appropriate types to certain functions.

Storing the function for manipulating the data brings us closer to the
realm of object-oriented programming where such functions are called meth-
ods, and the structures they are stored in are objects. We don’t pursue this
analogy further in this course, but you may see it in follow-up courses,
specifically 15-214 Software System Construction.

6 Using Generic Hashtables

First, we see how the client code works with the above interface. We use
here the example of word counts, which we also used to illustrate and test
hash tables earlier. The structure contains a string and a count.

/* elements x/
struct we {
char *word; /* key */
int count; /* information */

};

As mentioned before, strings are represented as arrays of characters (type
charx). The C function strcmp from library with header string.h com-
pares strings. We then define:

bool word_equal(ht_key wl, ht_key w2) {
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return strcmp((char*)wl, (char*)w2) == 0;

}

Keep in mind that ht_key is defined to be void*. We therefore have to
cast it to the appropriate type char* before we pass it to strcmp, which
requires two strings as arguments. Similarly, when extracting a key from
an element, we are given a pointer of type void* and have to cast it as of
type struct wcx.

/* extracting keys from elements */
ht_key elem_key(ht_elem e) {
REQUIRES(e != NULL);
struct wc *wcount = (struct wcx)e;
return wcount->word;

}

The hash function is defined in a similar manner.
Here is an example where we insert strings created from integers (func-
tion itoa) into a hash table and then search for them.

int n = (1<<10);
ht H = ht_new(n/5, &elem_key, &key_equal, &key_hash);
for (int 1 = 0; i < n; i++) {
struct wc*x e = xmalloc(sizeof (struct wc));
e—>word = itoa(i);
e->count = i;
ht_insert(H, e);
}
for (int i = 0; i < n; i++) {
char *s = itoa(i);
struct wc *wcount = (struct wcx*) (ht->lookup(H, s));
assert (wcount->count == i);
free(s);

}

Note the required cast when we receive an element from the table, while
the arguments e and s do not need to be cast because the conversion from
t* to voidx is performed implicitly by the compiler.

7 Implementing Generic Hash Tables

The hash table structure, defined in file hashtable.c now needs to store
the function pointers passed to it.
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struct ht_header {

size_t size; /* size >= 0 */
size_t capacity; /* capacity > 0 x/
chain **table; /* \length(table) == capacity */

ht_key (*elem_key) (ht_elem e);

bool (xkey_equal) (ht_key k1, ht_key k2);

unsigned int (*key_hash) (ht_key k, unsigned int m);
void (*elem_free) (ht_elem e);

};

We have also decided here to add the elem_free function to the hash table
header, instead of passing it in to the free function. This exploits that we can
generally anticipate how the elements will be freed when we first create the
hash table. A corresponding change must be made in the header file ht . h.

ht ht_new(size_t capacity,
ht_key (*elem_key) (ht_elem e),
bool (*key_equal) (ht_key ki1, ht_key k2),
unsigned int (*key_hash) (ht_key k, unsigned int m),
void (*elem_free) (ht_elem e))

REQUIRES (capacity > 0);

ht H = xmalloc(sizeof (struct ht_header));
H->size = 0;

H->capacity = capacity;

H->table = xcalloc(capacity, sizeof(chainx));
/* initialized to NULL */

H->elem_key = elem_key;

H->key_equal = key_equal;

H->key_hash = key_hash;

H->elem_free = elem_free;

ENSURES (is_ht (H));

return H;

When we search for an element (and insertion is similar) we retrieve
the functions from the hash table structure and call them. It is good style to
wrap this in short functions to make the code more readable. We use here
the directive static inline to instruct the compiler to inline the function,
which means that wherever a call to this function occurs, the compiler just
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replaces the call by the function body, for the sake of efficiency. This pro-
vides a similar but semantically cleaner and less error-prone alternative to
C preprocessor macros.

static inline ht_key elemkey(ht H, ht_elem e) {
return (¥H->elem_key) (e);

}

static inline bool keyequal(ht H, ht_key k1, ht_key k2) {
return (*H->key_equal) (kl, k2);
}

static inline unsigned int keyhash(ht H, ht_key k, unsigned int m) {
return (*H->key_hash) (k, m);
}

We exploit here that C allows function pointers to be directly applied to
arguments, implicitly dereferencing the pointer. We use

/* ht_lookup(H, k) returns NULL if key k not present in H */
ht_elem ht_lookup(ht H, ht_key k)
{
REQUIRES (is_ht(H));
int i = keyhash(H, k, H->capacity);
chain* p = H->tablel[i];
while (p != NULL) {
ASSERT (p->data != NULL);
if (keyequal(H, elemkey(H,p->data), k))
return p->data;
else
P = p—>next;
}
/* not in chain */
return NULL;

This concludes this short discussion of generic implementations of li-
braries, exploiting void* and function pointers.

In more modern languages such as ML, so-called parametric polymor-
phism can eliminate the need for checks when coercing from void*. The
corresponding construct in object-oriented languages such as Java is usu-
ally called generics. We do not discuss these in this course.
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8 A Subtle Memory Leak

Let’s look at the beginning code for insertion into the hash table.

void ht_insert(ht H, ht_elem e) {
REQUIRES (is_ht(H));
REQUIRES(e !'= NULL);
ht_key k = elemkey(H, e);
unsigned int i = keyhash(H, k, H->capacity);

chain *p = H->tablel[i];
while (p !'= NULL) {
ASSERT(is_chain(H, i, NULL));
ASSERT (p->data != NULL);
if (keyequal(H, elemkey(H, p->data), k)) {
/* overwrite existing element */
p—>data = e;
return;
} else {
P = p—>next;
b
X
ASSERT(p == NULL);

}

At the end of the while loop, we know that the key £ is not already in the

hash table. But this code fragment has a subtle memory leak. Can you see
it?!

The code author overlooked this in the port of the code from CO to C, but one of the
students noticed.
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The problem is that when we overwrite p->data with e, the element
currently stored in that field may be lost and can potentially no longer be
freed.

There seem to be two solutions. The first is for the hash table to apply
the elem_free function it was given. We should guard this with a check
that the element we are inserting is indeed new, otherwise we would have
a freed element in the hash table, leading to undefined behavior.

if (keyequal(H, elemkey(H, p->data), k)) {
/* free existing element, if different from new one */
if (p->data != e) (xH->elem_free) (p->data);
/* overwrite existing element */
p—>data = e;
return;

¥

The client has to be aware that the element already in the table will be freed
when a new one with the same key is added.

In order to avoid this potentially dangerous convention, we can also just
return the old element if there is one, and NULL otherwise. The information
that such an element already existed may be useful to the client in other
situations, so it seems like the preferable solution. The client could always
immediately apply the element free function if that is appropriate. This
requires a small change in the interface, but first we show the relevant code.

chain *p = H->tablel[i];
while (p !'= NULL) {
ASSERT (p->data != NULL);
if (keyequal(H, elemkey(H, p->data), k)) {
/* overwrite existing element and return it */
ht_elem tmp = p->data;
p—>data = e;
return tmp;
} else {
P = p—>next;
b
b
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The relevant part of the revised header file ht .h now reads:

typedef void* ht_elem;
typedef void* ht_key;

typedef struct ht_header* ht;

ht ht_new(size_t capacity,
ht_key (*elem_key) (ht_elem e),
bool (*key_equal) (ht_key ki1, ht_key k2),
unsigned int (*key_hash) (ht_key k, unsigned int m),
void (*elem_free) (ht_elem e));

/* ht_insert(H,e) returns previous element with key of e, if exists */
ht_elem ht_insert(ht H, ht_elem e);

/* ht_lookup(H,k) returns NULL if no element with key k exists */
ht_elem ht_lookup(ht H, ht_key k);

void ht_free(ht H);

9 Separate Compilation

Although the C language does not provide much support for modularity,
convention helps. The convention rests on a distinction between header files
(with extension .h) and program files (with extension c).

When we implement a data structure or other code, we provide not
only filename.c with the code, but also a header file filename.h with
declarations providing the interface for the code in filename.c. The im-
plementation filename.c contains #include "filename.h" atits top, and
client will have the same line. The fact that both implementation and client
include the same header file provides a measure of consistency between
the two.

A header file filename.h should never contain any function definitions
(that is, code), only type definitions, structure declarations, macros, and
function declarations (so-called function prototypes). In contrast, a pro-
gram file filename.c can contain both declarations and definitions, with
the understanding that the definitions are not available to other files.

These header files have header guards that prevent the compiler from
processing them more than once when compiling several files at the same
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time (thus they are sometimes called “once-only headers”. The guards are
directives to the C preprocessor, perhaps best explained by example. Here
again is the header file for hashtables:

#include <stbool.h>
#include <stdlib.h>

#ifndef _HASHTABLE_H_
#define _HASHTABLE_H_

typedef void* ht_key;
typedef void* ht_elem;

/* Hash table interface */
typedef struct ht* ht;
ht ht_new (size_t capacity,
ht_key (*elem_key) (ht_elem e),
bool (xkey_equal) (ht_key k1, ht_key k2),
unsigned int (*key_hash) (ht_key k, unsigned int m));
void ht_insert(ht H, ht_elem e);
ht_elem ht_lookup(ht H, ht_key k);
void ht_free(ht H, void (*elem_free) (ht_elem e));

#endif

The presence of #ifndef ... #endif causes the preprocessor to check whether
it has already defined _HASHTABLE_H_. The first time it scans the file, it will
not have defined it (note the importance of choosing a name that is unlikely
to occur in other headers!), and so it processes everything up to the #endif.
Any subsequent scans will skip everything between #ifndef and #endif.
In the case of this particular header, no harm is done other than a waste of
time in processing it more than once. But unpleasant compiler errors can
occur if headers in general are not once-only.

We only ever #include header files, never program files, in order to
maintain the separation between code and interface.

When gcc is invoked with multiple files, it behaves somewhat differ-
ently than cc0. It compiles each file separately, referring only to the included
header files. Those come in two forms, #include <syslib.h>where syslib
is a system library, and #include "filename.h", where filename.his pro-
vided in the local directory. Therefore, if the right header files are not in-
cluded, the program file will not compile correctly. We never pass a header
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file directly to gcc.

The compiler then produces a separate so-called object file filename.o
for each filename.c that is compiled. All the object files are then linked
together to create the executable. By default, that is a.out, but a name for
the executable can be provided with the -o switch.

Let us summarize the most important conventions:

Every file filename, except for the one with the main function, has a
header file filename.h and a program file filename.c.

The program filename.c and any client that would like to use it has
aline #include "filename.h" at the beginning.

The header file filename.h never contains any code, only macros,
type definition, structure definitions, and function headers (proto-
types). It has appropriate header guards to avoid problems if it is
loaded more than once.

We never #include any program files, only header files (with .h ex-
tension).

We only pass program files (with .c extension) to gcc on the com-
mand line.
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Exercises

Exercise 1 Convert the interface and implementation for binary search trees from
CO0 to C and make them generic. Also convert the testing code, and verify that no
memory is leaked in your tests. Make sure to adhere to the conventions described
in Section 9.
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