Lecture Notes on
Typesin C

15-122: Principles of Imperative Computation
Frank Pfenning, Rob Simmons

Lecture 19
June 17, 2014

1 Introduction

In lecture 18, we emphasized the things we lost by going to C:

Many operations that would safely cause an error in C0, like derefer-
encing NULL or reading outside the bounds of an array, are undefined
in C —we cannot predict or reason about what happens when we have
undefined behaviors.

It is not possible to capture or check the length of C arrays.

In C, pointers and arrays are the same — and we declare them like
pointers, writing int *i.

The CO types string, char* and char[] are all represented as point-
ers to char in C.

C is not garbage collected, so we have to explicitly say when we ex-
pect memory to be freed, which can easily lead to memory leaks.

In this lecture, we will endeavor to look on the bright side and look at the
new things that C gives us. But remember: with great power comes great
responsibility.

This lecture has three parts. First, we will continue our discussion of
memory management in C: everything has an address and we can use the
address-of operation &e to obtain this address. Second, we will look at the
different ways that C represents numbers and the general, though mostly

LECTURE NOTES JUNE 17, 2014

Types in C L19.2

implementation-defined, properties of these numbers that we frequently
count on. Third, we will look at the type void* and how it can be used to
implement generic data structures.

2 Address-of

In CO, we can only obtain new pointers and arrays with the built-in alloc
and alloc_array operations. As we discussed last time, alloc(ty) in CO
roughly translates to malloc(sizeof (ty)) in C, with the exception that C
does not initialize allocated memory to default values. Similarly, the CO
code alloc_array(ty, n) roughly translates to calloc(n, sizeof(ty)),
and calloc does initialize allocated memory to default values. Because
both of these operations can return NULL, we also introduced xmalloc and
xcalloc that allow us to safely assume a non-NULL result.

C also gives us a new way to create pointers. If e is an expression (like
x, A[12], or *x) that describes a memory location which we can read from
and potentially write to, then the expression &e gives us a pointer to that
memory location. In CO, if we have a struct containing a string and an
integer, it’s not possible to get a pointer to just the integer. This is possible
in C:

struct wcount {
char *word;
int count;

};

void increment(int *p) {
REQUIRES(p != NULL);
*p = *p + 1;

}

void increment_count(struct wcount *wc) {
REQUIRES(wc !'= NULL);
increment (& (wc->count)) ;

}

Because the type of wc->count is int, the expression & (wc->count) is
a pointer to an int. Calling increment_count (B) on a non-null struct will
cause the count field of the struct to be incremented by the increment func-
tion, which is passed a pointer to the second field of the struct.

LECTURE NOTES JUNE 17, 2014

Types in C L19.3

3 Stack Allocation

In C, we can also allocate data on the system stack (which is different from
the explicit stack data structure used in the running example). As discussed
in the lecture on memory layout, each function allocates memory in its so-
called stack frame for local variables. We can obtain a pointer to this memory
using the address-of operator. For example:

int main() {
int al = 1;
int a2 = 2;
increment (&al);
increment (&a2) ;

}

Note that there is no call to malloc or calloc which allocate spaces on the
system heap (again, this is different from the heap data structure we used
for priority queues).

Note that we can only free memory allocated with malloc or calloc,
but not memory that is on the system stack. Such memory will automat-
ically be freed when the function whose frame it belongs to returns. This
has two important consequences. The first is that the following is a bug,
because free will try to free the memory holding a;, which is not on the
heap:
int main()

int al =
int a2 =
free(al);

{
1;
2

I

}

The second consequence is pointers to data stored on the system stack do
not survive the function’s return. For example, the following is a bug;:

int *f_ohno() {
int a = 1; /* bug: a is deallocated when f_ohno() returns */
return &a;

}

A correct implementation requires us to allocate on the system heap, using
a call tomalloc or calloc (or one of the library functions which calls them
in turn).

LECTURE NOTES JUNE 17, 2014

Types in C L19.4

int *f() {
int* x = xmalloc(sizeof(int));
*x = 1;
return x;

}

In general, stack allocation is more efficient than heap allocation, be-
cause it is freed automatically when the function in which it is defined
returns. That removes the overhead of managing the memory explicitly.
However, if the data structure we allocate needs to survive past the end of
the current function you must allocate it on the heap.

4 Pointer Arithmetic in C

We have already discussed that C does not distinguish between pointers
and arrays; essentially a pointer holds a memory address which may be
the beginning of an array. In C we can actually calculate with memory
addresses. Before we explain how, please heed our recommendation:

Do not perform arithmetic on pointers!

Code with explicit pointer arithmetic will generally be harder to read and
is more error-prone than using the usual array access notation A[i].

Now that you have been warned, here is how it works. We can add an
integer to a pointer in order to obtain a new address. In our running ex-
ample, we can allocate an array and then push pointers to the first, second,
and third elements in the array onto a stack.

int *A = xcalloc(3, sizeof(int));

A[0] = 0; A[1] = 1; A[2] = 2;

increment (4); /* A[0] now equals 1 %/
increment (A+1); /* A[1] now equals 2 */
increment (A+2); /* A[2] now equals 3 */

The actual address denoted by A + 1 depends on the size of the elements
stored at A, in this case, the size of an int. A much better way to achieve
the same effect is

int *A = xcalloc(3, sizeof(int));

A[0] = 0; A[1] = 1; A[2] = 2;

increment (§A[0]); /* A[O] now equals 1 */
increment (&A[1]); /* A[1] now equals 2 */
increment (&A[2]); /* A[2] now equals 3 */

LECTURE NOTES JUNE 17, 2014

Types in C L19.5

We cannot free array elements individually, even though they are located
on the heap. The rule is that we can apply free only to pointers returned
from malloc or calloc. So in the example code we can only free A.

int* A = xcalloc(3, sizeof(int));
A[0] = 0; A[1] = 1; A[2] = 2;
free(&A[2]); /* bug: cannot free A[1] or A[2] separately */

The correct way to free this is as follows.

int* A = xcalloc(3, sizeof(int));
A[0] = 0; A[1] = 1; A[2] = 2;
free(A);

5 Numbers in C

In addition to the undefined behavior resulting from bad memory access
(dereferencing a NULL pointer or reading outside of an array), there is un-
defined behavior in C. In particular:

e Division by zero is undefined. (In CO, this always causes an excep-
tion.)

e Shifting left or right by negative numbers or by a too-large number is
undefined. (In CO, this always causes an exception.)

o Arithmetic overflow for signed types like int is undefined. (In CO0,
this is defined as modular arithmetic.)

This has some strange effects. If x and y are signed integers, then the
expressions x < x+1 and x/y == x/y are either true or undefined (due to
signed arithmetic or overflow, respectively). So the compiler is allowed
to pretend that these expressions are just true all the time. The compiler
is also allowed to behave the same way CO0 does, returning false in the
first case when x is the maximum integer and raising an exception in the
second case when y is 0. The compiler is also free to check for signed inte-
ger overflow and division by zero and start playing Rick Astley’s “Never
Gonna Give You Up” if either occurs, though this is last option is unlikely
in practice. Undefined behavior is unpredictable — it can and does change
dramatically between different computers, different compilers, and even
different versions of the same compiler.

LECTURE NOTES JUNE 17, 2014

Types in C L19.6

The fact that signed integer arithmetic is undefined is particularly an-
noying. In situations where we expect integer overflow to occur, we need
to use unsigned types: unsigned int instead of int. As an example, con-
sider a simple function to compute Fibonacci numbers. There are even
faster ways of doing this, but what we do here is to allocate an array on
the stack, fill it with successive Fibonacci numbers, and finally return the
desired value at the end.

unsigned int fib(int n) {
REQUIRES(n >= 0);
unsigned int A[n+2]; /* stack-allocated array A */
Af0] = 0;
Al1] 1;
for (int i = 0; i <= n-2; i++)
A[i+2] = A[i] + A[i+1];
return A[n]; /* deallocates A just before actual return */

In addition to int, which is a signed type, there are the signed types
short and long, and unsigned versions of each of these types — short is
smaller than int and long is bigger. The numeric type char is smaller than
short and always takes up one byte. The maximum and minimum values
of these numeric types can be found in the standard header file 1imits.h.

C, annoyingly, does not define whether char is signed or unsigned. A
signed char is definitely signed, a unsigned char is unsigned. The type
char can be either signed or unsigned — this is implementation defined.

(C also gives us floating point numbers, float and double, but we will
not cover these in 122.)

6 Implementation-defined Behavior

It is often very difficult to say useful and precise things about the C pro-
gramming language, because many of the features of C that we have to
rely on in practice are not part of the C standard. Instead, they are things
that the C standard leaves up to the implementation — implementation
defined behaviors. Implementation defined behaviors make it quite dif-
ficult to write code on one computer that will compile and run on another
computer, because on the other compiler may make completely different
choices about implementation defined behavior.

LECTURE NOTES JUNE 17, 2014

Types in C L19.7

The first example we have seen is that, while a char is always exactly
one byte, we don’t know whether it is signed or unsigned — whether it
can represent integer values in the range [128, 128) or integer values in the
range [0, 256). And it is even worse, because a byte can be more than 8 bits!
If you really want to mean “8 bits,” you should say octet.

In this class we going to rely on a number of implementation-defined
behaviors. For example, you can always assume that bytes are 8 bits. When
it is important to not rely on integer sizes being implementation-defined, it
is possible to use the types defined in stdint.h, which defines signed and
unsigned types of specific sizes. In the systems that you are going to use for
programming, you can reasonably expect a common set of implementation-
defined behaviors: char will be a 8-bit integer (maybe signed, maybe un-
signed) and so on. This chart describes how these types line up:

C (signed) stdint.h(signed) stdint.h (unsigned) C (unsigned)

signed char int8_t uint8_t unsigned char
short intl6_t uintl6_t unsigned short
int int32_t uint32_t unsigned int

long int64_t uint64_t unsigned long

However, please remember that we cannot count on this correspondence
behavior in all C compilers!

There are two other crucial numerical types. The first, size_t, is the
type used represent memory sizes and array indices. The sizeof (ty) op-
eration in C actually returns just the size of a type in bytes, so malloc
and xmalloc actually take one argument of type size_t and calloc and
xcalloc take two arguments of type size_t. In the early decades of the
21st century, we're still used to finding both 32-bit and 64-bit machines and
programs; size_t will usually be the same as uint32_t in a 32-bit system
and the same as uint64_t in a 64-bit system. The same goes for uintptr_t,
an integer type used to represent pointers. Everything in C has an address,
every address can be turned into a pointer with the address-of operation,
and every address is ultimately representable as a number. To make sense
of what it means to store a pointer in a integer type, we're going to need to
introduce a new topic, casting.

7 Casting Between Numeric Types

If we have the hexadecimal value 0xFO — the series of bits 11110000 — stored
in an unsigned char, and we want to turn that value into an int. (This is

LECTURE NOTES JUNE 17, 2014

Types in C L19.8

a problem you will actually encounter later in this semester.) We can cast
this character value to an integer value buy writing (int)e.

unsigned char ¢ = 0xFO;
int 1 = (int)c;

However, what will the value of this integer be? You can run this code and
find out on your own, but the important thing to realize is that it's not clear,
because there are two different stories we can tell.

In the first story, we start by transforming the unsigned char into an
unsigned int. When we cast from a small unsigned quantity to a large un-
signed quantity, we can be sure that the value will be preserved. Because
the bits 11110000 are understood as the unsigned integer 240, the unsigned
int will also be 240, written in hexadecimal as 0x000000F0. Then, when
we cast from an unsigned int to a signed int, we can expect the bits to re-
main the same (though this is really implementation defined), and because
the interpretation of signed integers is two’s-complement (also implemen-
tation defined) the final value will be 240.

In the second story, we transform the unsigned char into the signed-
char. Again, the implementation-defined behavior we expect is that we will
interpret the result as a 8-bit signed two’s-complement quantity, meaning
that 0xFO0 is understood as -16. Then, when we cast from the small signed
quantity (char) to a large signed quantity (int), we know the quantity -16
will be preserved, meaning that we will end up with a signed integer writ-
ten in hexadecimal as OxFFFFFFFO.

OxFO
(as a uint8_t: 240)

preserve value preserve bit pattern

0x000000FO0 0xFO

(as an uint32_t: 240) (asanint8_t: -16)
preserve bit pattern preserve value

0x000000F0 OxFFFFFFFO

(as an int32_t: 240) (as anint32_t: -16)

The order in which we do these two steps matters! Therefore, if we
want to be clear about what result we want, we should cast in smaller steps
to be explicit about how we want our casts to work:

LECTURE NOTES JUNE 17, 2014

Types in C L19.9

unsigned char c = 0xFO;

int i1 = (int) (unsigned int) c;
int i2 = (int) (char) c;

assert (il == 240);

assert(i2 == -16);

8 Void Pointers

In C, a special type void* denotes a pointer to a value of unknown type.
For most pointers, the type of a pointer tells C how big it is. When you
have a char#, it represents an address that points to one byte (o1, equiva-
lently, an array of one-byte objects). When you have a intx, it represents
an address that points to four bytes (assuming the implementation defines
4-byte integers), so when C dereferences this pointer it will read or write to
four bytes at a time. A voidx is just an address; C does not know how to
read or write from it. We can cast back and forth between void pointers to
other pointers.

int x = 12;

int *y = xcalloc(l, sizeof(int));
int *z;

void *px = (void*)&x;
void *py = (voidx)y;
z = (int*)px;
z = (int*)py;

Casting out of void* incorrectly is generally either undefined or implementation-

defined. We can also cast between pointers and the intptr_t types that can
contain them.

int x = 12;
int *y = xcalloc(l, sizeof(int));
int *z;

intptr_t ipx = (intptr_t)&x;

uintptr_t ipy = (uintptr_t)y;

z = (int*)ipx;

z = (int*)ipy;
Thus, we don’t strictly need the void* type —we could always use uintptr_t
—but it is helpful to use the C type system to help us avoid accidentally, say

adding two pointers together.
The return type of xmalloc and company is actually a void pointer.

LECTURE NOTES JUNE 17, 2014

Types in C L19.10

void *xcalloc(size_t nobj, size_t size);
void *xmalloc(size_t size);

We have not shown explicit casts when we allocate, because C is willing to
insert some casts for us. This is convenient when allocating memory, but
in other situations it is a source of buggy code and does more harm than
good. If we wanted to be explicit about the cast from void* to int*, we
would write this:

int *px = (int*)xmalloc(sizeof (int));

As one last example, while this is implementation defined behavior, we
can also store integers directly inside of a void pointer:

int x = 12;
void *px = (voidx) (intptr_t)12;
int y = (int) (intptr_t)px;

This is a bit of an abuse — px does not contain a memory address, it contains
the number 12 pretending to be an address — but this is a fairly common
practice.

9 Simple Libraries

We can use void pointers to make data structures more generic. For exam-
ple, an interface to generic stacks might be specified as

typedef struct stack* stack;

bool stack_empty(stack S); /* 0(1) =/
stack stack_new(); /* 0(1) =/
void push(stack S, void* e); /* 0(1) x/
void* pop(stack S); /* 0(1) =/
void* stack_free(stack S); /* S must be empty! */

Notice the use of voidx for the first argument to push and for the return
type of pop.

stack S = stack_new();

struct wcount *wc = malloc(sizeof (struct wcount));
wc—>name = "wherefore"

wc->count = 3;

push(S, wc);

LECTURE NOTES JUNE 17, 2014

Types in C L19.11

wc = malloc(sizeof (struct wcount));
wc—->name = "henceforth"

wc—>count = 5;

push(S, wc);

while(!stack_empty(8)) {
wc = (struct wcount*)pop(S);
printf ("Popped %s with count %d\n", wc->name, wc->count);
free(wc);

3

Because we can squeeze integers into a void*, we can also use the
generic stacks to store integers:

stack S = stack_new();
push(S, (void*) (intptr_t)6);
push(S, (void#) (intptr_t)12);

while(!stack_empty(S)) {
printf ("Popped: %d\n", (int) (intptr_t)pop(S));
}

Translating stacks from CO to C and making them generic is no different
than translating BSTs. In fact, we no longer need stacks to know about the
client interface, because rather than having one specific element, we have
a generic element. The trade-off is that we no longer know how we are
supposed to free a generic element when we free a stack. As the previous
example shows, the elements stored as void pointers might not even be
pointers!

The easy way out is to require that stack_free only be called on empty
stacks, which means there are no elements that we have to consider freeing.
This makes the implementation of stack_free simple:

void stack_free(stack S) {
REQUIRES (is_stack(S) && stack_empty(S));
ASSERT (S->top == S->bottom) ;
free(S->top);
free(8);

}

In the next C lecture, we will learn how to extend the stack implemen-
tation so that we can free non-empty stacks without leaks. This strategy

LECTURE NOTES JUNE 17, 2014

Types in C L19.12

will also be necessary to make generic versions of more interesting data
structures like BSTs, hash tables, and priority queues.

LECTURE NOTES JUNE 17, 2014

	Introduction
	Address-of
	Stack Allocation
	Pointer Arithmetic in C
	Numbers in C
	Implementation-defined Behavior
	Casting Between Numeric Types
	Void Pointers
	Simple Libraries

