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1 Introduction

Most lectures so far had topics related to all three major categories of learn-
ing goals for the course: computational thinking, algorithms, and program-
ming. The same is true for this lecture. With respect to algorithms, we in-
troduce unbounded arrays and operations on them. Analyzing them requires
amortized analysis, a particular way to reason about sequences of operations
on data structures. We also briefly talk about again about data structure in-
variants and interfaces, which are crucial computational thinking concepts.

Note For Summer 2014: This interface and implementation of unbounded
arrays described here is a bit different than the one in class and posted to
http://www.cs.cmu.edu/~rjsimmon/15122-m14/lec/10-ubarrays/arr. cO.
The most important differences are:

e Our arrays were named arr_, these are named uba_.

e We gave an initial size to our array (and arrays are initialized in the
usual CO fashion like all other heap-allocated memory), the interface
here starts arrays at size 0 and gives them an initial limit (a part of
the implementation that shouldn’t necessarily be available to the pro-
grammer!)

e Our data structure invariant required that the size be strictly less than
the limit, which had the result that we always wasted one cell of the
array. This changed amortized analysis a little bit, but the result is the
same.
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2 Unbounded Arrays

In the second homework assignment, you were asked to read in some files
such as the Collected Works of Shakespeare, the Scrabble Players Dictionary, or
anonymous tweets collected from Twitter. What kind of data structure do
we want to use when we read the file? In later parts of the assignment
we want to look up words, perhaps sort them, so it is natural to want to
use an array of strings, each string constituting a word. A problem is that
before we start reading we don’t know how many words there will be in
the file so we cannot allocate an array of the right size! One solution uses
either a queue or a stack. We discussed this in Lectures 9 on queues and
stacks. However, the array interface that we originally introduced in Lec-
ture 8 wouldn’t work, because it requires us to bound the size of the array.
It would work, however, if we had unbounded arrays. While arrays are a
language primitive, unbounded arrays are a data structure that we need
to implement, and we can implement it as an extension of the array data
structure.

Thinking about it abstractly, an unbounded array should be like an ar-
ray in the sense that we can get and set the value of an arbitrary element
via its index 7. We should also be able to add a new element to the end of
the array, and delete an element from the end of the array.

We use the unbounded array by creating an empty one before reading a
file. Then we read words from the file, one by one, and add them to the end
of the unbounded array. Meanwhile we can count the number of elements
to know how many words we have read. We trust the data structure not to
run out of space unless we hit some hard memory limit, which is unlikely
for the kind of task we have in mind, given modern operating systems.
When we have read the whole file the words will be in the unbounded
array, in order, the first word at index 0, the second at index 1, etc.

The general implementation strategy is as follows. We maintain an ar-
ray of a fixed length limit and an internal index size which tracks how many
elements are actually used in the array. When we add a new element we
increment size, when we remove an element we decrement size. The tricky
issue is how to proceed when we are already at the limit and want to add
another element. At that point, we allocate a new array with a larger limit
and copy the elements we already have to the new array. For reasons we
explain later in this lecture, every time we need to enlarge the array we dou-
ble its size. Removing an element from the end is simple: we just decrement
size. There are some issues to consider if we want to shrink the array, but
this is optional.
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3 An Interface to Unbounded Arrays

As usual when designing a data structure, we start by thinking about its
interface. We must be able to create a new unbounded array, access its
elements (both for reading and writing), and add or remove elements at the
end. The elements of the array should be of arbitrary type (like ordinary
arrays), but we cannot achieve this form of genericity in C0 at present. We
will discuss ways to write generic code later in the course when we move
to C. Instead, we just indicate this by defining and using a type name elem
(here as string). These considerations lead us to the following interface:

typedef string elem;
/* Interface of unbounded arrays */
typedef struct uba_header* uba;

uba uba_new(int initial_limit)
//@requires initial_limit > 0;
int uba_size(uba L) /* "\length(L)" */

//Q@ensures \result >= 0;

’

elem uba_get(uba L, int index) /* "L[index]" */
//@requires 0 <= index && index < uba_size(L);

b

void uba_set(uba L, int index, elem e) /* "L[index] = e" */
//@requires 0 <= index && index < uba_size(L);

void uba_add(uba L, elem e); /* add e at the end of L */

elem uba_rem(uba L) /* remove last element in L */
//Q@requires uba_size(L) > 0;

b

Contracts on interfaces are cumulative with respect to the contracts on
the implementations: both are checked when a function is called through
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its interface. Note that we do not mention is_uba, since this function is
not exposed to the client. Client code should only ever be able to obtain
valid unbounded arrays if it uses the interface, so preservation of the data
structure invariants should be considered an internal invariant of the data
structure implementation.

Please read over the interface carefully to make sure you understand all
of its provisions. We would like all the specified operations to take only
constant time, that is, O(1). As we will see in the remainder of this lecture
this is quite tricky and we have to make some intriguing qualifications in
our statement of the asymptotic complexity.

Unfortunately, C (and, by association, C0) does not provide a way to en-
force that clients do not incorrectly exploit details of the implementation of
a data structure. Higher-level languages such as Java or ML have interfaces
and data abstraction as one of their explicit design goals. In this course, the
use of interfaces is a matter of programming discipline. As we discuss fur-
ther data structures we generally focus on the interface first, before writing
any code. This is because the interface often guides the selection of an im-
plementation technique and the individual functions.

4 Implementing Unbounded Arrays

According to our implementation sketch, an unbounded array needs to
track three forms of data: an integer limit, an integer size and an array
of elements (e.g., strings). We can put these together in a struct with fields
limit, size and data as the fields of the struct. It is declared with

struct uba_header {

int limit; /% 0 < limit */
int size; /* 0 <= gize && size <= limit */
elem[] data; /* \length(data) == limit */

3
Also recall the line from the interface
typedef struct uba_header* uba;

which states that a uba is a pointer to a struct uba_header. Recall that
structs can only be allocated on the heap (rather than stored in variables),
so we always work with the addresses of structs. And addresses are the
values of pointers.
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There are some data structure invariants that we maintain, although they
may be temporarily violated as the elements of the structure are manipu-
lated at a low level. Generally, when we pass a pointer to the data structure
or assign it to a variable we expect these invariants to hold. C0O, however,
has no intrinsic support for ensuring these invariants. Instead, our method
is to define a function to test them and then verify adherence to the in-
variants in contracts as well as loop invariants and assertions. Here, the
function is_uba serves that purpose. In previous lectures we had functions
is_queue and is_stack that fulfill a similar role.

Generally, we would like contract functions like is_uba not to fail with
a contract exception, but to return false if the data structure invariant is
violated. However, since the lengths of arrays can only be checked in con-
tracts (they may not be available when a program is compiled without -d
to make computation as efficient as possible) we may have to use contracts
to some extent even for functions whose intended use is only in contracts.

bool is_uba (uba L)

{
if (L == NULL) return false;
if (1 (0 <= L->size)) return false;
if (1 (L->size <= L->1imit)) return false;
if (' (0 < L->1imit)) return false;
//Q@assert L->limit == \length(L->data);
return true;

}

Note that we must check to make sure that L != NULL before checking any
other fields, including L->size and L->data (i.e. L->1imit == \length(L->data))
in order to make sure the pointer dereferences on L are safe. Safety of an-
notations and safety of contract functions is just as indispensable as safety
in the rest of the code.

To create a new unbounded array, we allocate a struct uba_header
and an array of a supplied initial limit.

uba uba_new (int initial_limit)
//@requires initial_limit > O;
//Qensures is_uba(\result);
{
uba L = alloc(struct uba_header);
L->1imit = initial_limit;
L->size = 0;
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L->data = alloc_array(elem, L->limit);
return L;

}

Getting and setting an element of an unbounded array is straightfor-
ward. However, we do have to verify that the array access is in bounds.
This is stricter than checking that it is within the allocated array (below
limit), because everything beyond the current size should be considered
to be undefined. These array elements have not yet been added to the array,
so reading or writing them is meaningless. We show only the operation of
writing to an unbounded array, uba_set.

void uba_set(uba L, int index, elem e)
//@requires is_uba(l);
//@requires 0 <= index && index < L->size;
{

L->data[index] = e;

return;

}

More interesting is the operation of adding an element to the end of an
unbounded array. For that we need a function to resize an unbounded ar-
ray. This function takes an unbounded array L and a new limit new_limit.
It is required that the new limit is strictly greater than the current size, to
make sure we have enough room to preserve all current elements and one
more for the next one to add. We also stipulate that the size does not change
by stating L->size == \old(L->size) in the postcondition. In general,
\old(e) in a postcondition evaluates e just after the function is called and
before the body is executed. This allows us to refer to the state of memory
when the function is called in the postcondition.

void uba_resize(uba L, int new_limit)
//@requires is_uba(l);

//@requires L->size < new_limit;
//Qensures is_uba(l);

//Q@ensures L->1limit == new_limit && L->size == \old(L->size);
//Qensures L->size < L->limit;
{

elem[] B = alloc_array(elem, new_limit);
for (int i = 0; i < L->size; i++)
//@loop_invariant O <= i && i <= L->size;
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{
B[i]

L->datali];
}
L->1imit = new_limit;
/* L->size remains unchanged */
L->data = B;
return;

Finally we are ready to write the function that adds an element to the
end of an unbounded array. We first check whether there is room for an-
other element and, if not, double the size of the underlying array of strings.
The contract just states that the array is valid before and after the operation.
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void uba_add(uba L, elem e)
//Q@requires is_uba(l);
//Qensures is_uba(l);
{
if (L->size == L->limit) {
/* Check for overflow */
assert (L->1imit <= int_max()/2);
uba_resize(L, 2*xL->1limit);

}

//Q@assert L->size < L->limit;
L->data[L->size] = e;
L->size++;

return;

}

We check that doubling the array size would not overflow and raise an
assertion failure. Using assert as a statement instead of inside an anno-
tation means that the assertion will always be checked, even if the code
is compiled without -d. It will have the same effect as, for example, the
alloc_array function when there is not enough memory to allocate the
array.

We discuss how to remove an element from an array in section 6.

5 Amortized Analysis

It is easy to see that reading from or writing to an unbounded array at a
given index is a constant-time operation. However, adding an element to
an array is not. Most of the time it takes constant time O(1), but when we
have run out of space it take times O(size) because we have to copy the old
elements to the new underlying array. On the other hand, it doesn’t seem
to happen very often. Can we characterize this situation more precisely?
This is the subject of amortized analysis.

In order to make the analysis as concrete as possible, we want to count
the number of writes to an array, that is, the number of assignments A[—] =
— that are performed. Calling the operation to add a new element to an
unbounded array an insert, we claim:

The worst-case cost of n insert operations into an unbounded array is
O(n).
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This statement is quite different from what we have done before, when we
have analyzed the cost of a particular function call like sort or binsearch.
Based on the common use of unbounded arrays, we should consider the
cost of multiple operations together. Many other data structures introduced
later in the course will be subject to a similar analysis.

How do we prove the above bound? A simple insert (when there is
room in the array) requires a single write operation, so we count it as 1.
Similarly, we count the act of copying one element from one array to an-
other as 1 operation, because it requires one write operation. Now per-
forming a sequence of inserts, starting with an empty array of, say, size 4
looks as follows.

call op’s | size | limit
uba_add(L,"a") | 1 1 4
uba_add(L,"b") 1 2 4
uba_add(L,"c") | 1 3 4
uba_add(L,"d") 1 4 4
uba_add(L,"e") | 5 5 8
uba_add(L,"f") 1 6 8
uba_add(L,"g") 1 7 8
uba_add(L,"h") 1 8 8
uba_add(L,"i") 9 9 16

We have taken 4 extra operations when inserting "e" in order to copy "a"
through "d". Overall, we have performed 21 operations for inserting 9
elements. Would that be O(n) by the time we had inserted n elements?

We approach this by giving us an overall budget of ¢ * n operations
(“tokens”) before we start to insert n elements. Every time we perform
a write operation we spend a token. If we perform all n inserts without
running out of tokens, we have achieved the desired amortized complexity.

One difficulty is to guess the right constant c. We already know that
c = 1 or ¢ = 2 will not be enough, because in the sequence above we must
spend 21 tokens to insert 9 elements. Let’s try ¢ = 3, so we start with 27
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tokens.
tokens
call op’s left size | limit
uba_add(L,"a") 1 26 1 4
uba_add(L,"b") 1 25 2 4
uba_add(L,"c") 1 24 3 4
uba_add(L,"d") 1 23 4 4
uba_add(L,"e") 5 18 5 8
uba_add(L,"f") 1 17 6 8
uba_add(L,"g") 1 16 7 8
uba_add(L,"h") 1 15 8 8
uba_add(L,"i") | 9 6 9 16

We see that we spend 4 tokens when adding "e" to copy "a" through "d",
and we add a new one for the insertion of "e" itself.

One of the insights of amortized analysis is that we don’t need to know
the number n of inserts ahead of time. In order to achieve the bound of
c * n operations, we simply allow each call to perform c operations. If it
performs fewer, these remain in the budget and may be spent later! Let’s
go through the same sequence of calls again.

allocated spent saved total saved
call op’s tokens tokens tokens tokens size | limit
uba_add(L,"a" 1 3 1 2 2 1 4
uba_add(L,"b") 1 3 1 2 4 2 4
uba_add(L,"c") 1 3 1 2 6 3 4
uba_add(L,"d") 1 3 1 2 8 4 4
uba_add(L,"e") 5 3 5 -2 6 5} 8
uba_add(L,"f") 1 3 1 2 8 6 8
uba_add(L,"g") 1 3 1 2 10 7 8
uba_add(L,"h") 1 3 1 2 12 8 8
uba_add(L,"i") 9 3 9 —6 6 9 16

The crucial property we need is that there are £ > 0 tokens left just after
we have doubled the size of the array. We think of this as an invariant of
the computation: it should always be true, no matter how many strings we
insert. In this example we reach 6 tokens after 5 inserts and again after 9
inserts.

To prove this invariant, we must show that it holds the first time we
have to double the size of the array, and that it is preserved by the opera-
tions.

When we create the array, we give it some initial limit limity. We run
out of space, once we have inserted limit, tokens, arriving at the following
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situation.
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We have accrued 2 * limit, tokens. We have to spend limit, of them to copy
the elements so far, keeping limity > 0 in the bank.
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So the invariant holds the first time we double the size.
Now assume we have just doubled the size of the array and the invari-
ant holds, that is, we have k > 0 tokens, and 2 x size = limit.
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limit = 2*size

After size more inserts we are at limit and added another 2 * size = limit

tokens.
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On the next insert we double the size of the array and copy limit array
elements, spending limit tokens.

Rl
llall llbll llcll lldll llell llfll llgll llhll
1 1 1 1 4 1 ] ] s ke
- - - - size | - ;| limit = 2%size
1 1 1 1 i I i i
1 1 1 1 1 1 i i
I I I I i I I i
1 1 1 1 1 I 1 1 k*s
A4 v A4 v ¥ 12
ugr |y | wgy | agr || agr | upn | ugn | apn ‘ ‘ ‘ ‘ ‘ ‘ ‘
size limit = 2*size

Our bank account is reduced back to k tokens, but we know k£ > 0, preserv-
ing our invariant.

Since we only save a constant number of tokens on each operation, in
addition to the constant time the operation itself takes, we never perform
more operations than a constant times the number of operations. So our
claim above is true: any sequence of n operations performs at most O(n)
steps. We also say that the insert operation has constant amortized time.

This completes the argument.

In the example, the number of tokens will now never fall below 6. If we
add another 8 elements, we will also put 2 * 8 = 16 tokens into the bank.
We will need to spend these to copy the 16 elements already in the array
and we are back down to 6.

Tokens are a conceptual tool in our analysis, but they don’t need to be
implemented. The fact that there are always 0 or more tokens during any
sequence of operations is an invariant of the data structure, although not
quite in the same way as discussed before because it tracks sequences of
operations rather than the internal state of the structure. In fact, it would
be possible to add a new field to the representation of the array that would
count tokens and raise an exception if it becomes negative. That would
alert us to some kind of mistake, either in our amortized analysis or in our
program. This would, however, incur a runtime overhead even when asser-
tions are not checked, so tokens are rarely, if ever, explicitly implemented.

This kind of analysis is important to avoid serious programming mis-
takes. For example, let’s say we decide to increase the size of the array
only by 1 whenever we run out of space. The token scheme above does
not work, because we cannot set aside enough tokens before we need to
copy the array again. And, indeed, after we hit limit the first time, the next
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sequence of n inserts takes O(n?) operations, because we copy the array on
each step until we reach 2 x limit.

6 Removing Elements

Removing elements from the end of the array is simple, and does not change
our amortized analysis, unless we want to shrink the size of the array.

A first idea might be to simply cut the array in half whenever size
reaches half the size of the array. However, this cannot work in constant
amortized time. The example demonstrating that is an alternating sequence
of n inserts and n deletes precisely when we are at the limit of the array. In
that case the total cost of the 2 x n operations will be O(n?).

To avoid this problem we cut the size of the array in half only when the
number of elements in it reaches limit /4. The amortized analysis requires
two tokens for any deletion: one to delete the element, and one for any
future copy. Then if size = limit/2 just after we doubled the size of the
array and have no tokens, putting aside one token on every delete means
that we have size/2 = limit/4 tokens when we arrive at a size of limit /4.
Again, we have just enough tokens to copy the limit /4 elements to the new,
smaller array of size limit/2.

The code for uba_rem (“remove from end”):

elem uba_rem(uba L)
//Qrequires is_uba(l);
//Q@requires L->size > 0;
//Q@ensures is_uba(l);
{
if (L->size <= L->limit/4 && L->limit >= 2)
uba_resize(L, L->1imit/2);
L->size——;
elem e = L->data[L->size];
return e;

}

We explicitly check that L->1imit >= 2 to make sure that the limit never
becomes 0, which would violate one of our data structure invariants.

One side remark: before we decrement size, we should delete the el-
ement from the array by writing L->data[L->size] = "". In C0, we do
not have any explicit memory management. Storage will be reclaimed and
used for future allocation when the garbage collector can see that data are
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no longer accessible from the program. If we conceptually remove an ele-
ment from an unbounded array, but actually keep the element in the (now
conceptually empty) array element, the garbage collector can not determine
that we will not access it again, because the array still contains a reference
to it. In order to allow the garbage collector to free the space occupied by
the strings stored in the array, we therefore should overwrite the array el-
ement with the empty string "", which is the default element for strings.
This, however, makes the code specific to strings, which we try to avoid.
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Exercises

Exercise 1 When removing elements from the unbounded array we resize if the
limit grossly exceeds its size. Namely when L->size <= L->limit/4. Your first
instinct might have been to already shrink the array when L->size <= L->limit/2.
We have arqued by example why that does not give us constant amortized cost
O(n) for a sequence of n operations. We have also sketched an argument why
L->size <= L->1imit/2 gives the right amortized cost. At which step in that
argument would you notice that L->size <= L->1imit/2 is the wrong choice?
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