Lecture Notes on
Pointers & Linked Lists

15-122: Principles of Imperative Computation
Frank Pfenning, Rob Simmons, André Platzer

Lecture 09
May 30, 2014

1 Introduction

In this lecture we complete our discussion of types in C0O by discussing
pointers and structs, two great tastes that go great together. We will dis-
cuss using contracts to ensure that pointer accesses are safe, as well as the
use of linked lists to implement the stack and queue interfaces that were
introduced last time. The linked list implementation of stacks and queues
allows us to handle lists of any length.

Relating this to our learning goals, we have

Computational Thinking: We emphasize the importance of abstraction by
producing a second implementation of the stacks and queues we in-
troduced in the last lecture.

Algorithms and Data Structures: Linked lists are a fundamental data struc-
ture.

Programming: We will see structs and pointers, and the use of recursion in
the definition of structs.

2 Structs and pointers
So far in this course, we’ve worked with five different CO types — int, bool,

char, string, and arrays ¢[] (there is a array type t[] for every type ?).
The character, string, Boolean, and integer values that we manipulate, store

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.2

locally, and pass to functions are just the values themselves; the picture we
work with looks like this:

0 1 2 3 4

charc | \n’
llb” llf" ‘

” ”

—

Me ue

inti |4
string[] A

When we consider arrays, the things we store in assignable variables or
pass to functions are addresses, references to the place where the data stored
in the array can be accessed. An array allows us to store and access some
number of values of the same type (which we reference as A[0], A[1], and
SO on.

The next data structure we will consider is the struct. A struct can be
used to aggregate together different types of data, which helps us to create
data structures. In contrast, an array is an aggregate of elements of the same
type.

Structs must be explicitly declared in order to define their “shape”. For
example, if we think of an image, we want to store an array of pixels along-
side the width and height of the image, and a struct allows us to do that:

typedef int pixel;

struct img_header {
pixel[] data;
int width;
int height;

3

Here data, width, and height are not variables, but fields of the struct.
The declaration expresses that every image has an array of data as well as a
width and a height. This description is incomplete, as there are some miss-
ing consistency checks — we would expect the length of data to be equal to
the width times the height, for instance, but we can capture such properties
in a separate data structure invariant.

Structs do not necessarily fit into a machine word because they can
have arbitrarily many components, so they must be allocated on the heap
(in memory, just like arrays). This is true even if they happen to be small
enough to fit into a word (in order to maintain a uniform and simple lan-
guage implementation).

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.3

% coin structdemo.cO

CO interpreter (coin) 0.3.2 ’Nickel’

Type ‘#help’ for help or ‘#quit’ to exit.

--> struct img_header IMG;

<stdio>:1.1-1.22:error:type struct img_header not small

[Hint: cannot pass or store structs in variables directly; use
pointers]

How, then, do we manipulate structs? We use the same solution as
for arrays: we manipulate them via their address in memory. Instead of
alloc_array we call alloc which returns a pointer to the struct that has
been allocated in memory. Let’s look at an example in coin.

--> struct img_header* IMG = alloc(struct img_header);
IMG is OxFFAFFF20 (struct img_headerx)

We can access the fields of a struct, for reading or writing, through the
notation p->f where p is a pointer to a struct, and f is the name of a field
in that struct. Continuing above, let’s see what the default values are in the
allocated memory.

--> IMG->data;

(default empty int[] with O elements)
--> IMG->width;

0 (int)

--> IMG->height;

0 (int)

We can write to the fields of a struct by using the arrow notation on the
left-hand side of an assignment.

--> IMG->data = alloc_array(pixel, 2);
IMG->data is OxFFAFC130 (int[] with 2 elements)
-=> IMG->width = 1;

IMG->width is 1 (int)

--> (xIMG) .height = 2;

(*(IMG)) .height is 2 (int)

--> IMG->datal[0] = OxFFOOFFO0O;

IMG->datal[0] is -16711936 (int)

--> IMG->data[1] = OxFFFF0000;

IMG->datal[1] is -65536 (int)

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.4

The notation (*p).f is a longer form of p->f. First, *p follows the
pointer to arrive at the struct in memory, then .f selects the field £. We
will rarely use this dot-notation (xp) . f in this course, preferring the arrow-
notation p—>f.

An updated picture of memory, taking into account the initialization
above, looks like this:

charc | \n’ 0 1 2 3 4
inti |4 L [T [Te” | ‘
string[] A data width height
struct img_header* IMG '—>{ ! ‘ 1 ‘ 2 ‘

0 1 2
| OXFFOOFFOO | OXFFFF0000 |

3 Pointers

As we have seen in the previous section, a pointer is needed to refer to a
struct that has been allocated on the heap. In can also be used more gener-
ally to refer to an element of arbitrary type that has been allocated on the
heap. For example:

-=> int* ptrl = alloc(int);
ptrl is OxFFAFC120 (intx*)
--> *xptrl = 16;

*(ptrl) is 16 (int)

-=> *ptril;

16 (int)

In this case we refer to the value using the notation *p, either to read (when
we use it inside an expression) or to write (if we use it on the left-hand side
of an assignment).

So we would be tempted to say that a pointer value is simply an ad-
dress. But this story, which was correct for arrays, is not quite correct for
pointers. There is also a special value NULL. Its main feature is that NULL is
not a valid address, so we cannot dereference it to obtain stored data. For
example:

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.5

--> int* ptr2 = NULL;

ptr2 is NULL (intx*)

-=> *ptr2;

Error: null pointer was accessed
Last position: <stdio>:1.1-1.3

Graphically, NULL is sometimes represented with the ground symbol, so we
can represent our updated setting like this:

0 1 2 3 4
w [ver [er g

string[] A data width height

struct img_header* IMG o—ﬂ ! ‘ 1 ‘ 2 ‘
int* ptrl o——% 16 ‘

int* ptr2 | e—{ll 0 1 2
| OXFFOOFFOO | OXFFFF0000 |

charc | \n’

” ”

—

"
inti G

To rephrase, we say that a pointer value is an address, of which there
are two kinds. A valid address is one that has been allocated explicitly with
alloc, while NULL is an invalid address. In C, there are opportunities to
create many other invalid addresses, as we will discuss in another lecture.

Attempting to dereference the null pointer is a safety violation in the
same class as trying to access an array with an out-of-bounds index. In CO0,
you will reliably get an error message, but in C the result is undefined and
will not necessarily lead to an error. Therefore:

Whenever you dereference a pointer p, either as *p or p—>f, you must
have a reason to know that p cannot be NULL.

In many cases this may require function preconditions or loop invariants,
just as for array accesses.

4 Linked Lists

Linked lists are a common alternative to arrays in the implementation of
data structures. Each item in a linked list contains a data element of some
type and a pointer to the next item in the list. It is easy to insert and delete
elements in a linked list, which are not natural operations on arrays, since

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.6

arrays have a fixed size. On the other hand access to an element in the
middle of the list is usually O(n), where n is the length of the list.

An item in a linked list consists of a struct containing the data element
and a pointer to another linked list. In CO we have to commit to the type
of element that is stored in the linked list. We will refer to this data as
having type elem, with the expectation that there will be a type definition
elsewhere telling CO what elem is supposed to be. Keeping this in mind
ensures that none of the code actually depends on what type is chosen.
These considerations give rise to the following definition:

struct list_node {
elem data;
struct list_node* next;
};
typedef struct list_node list;

This definition is an example of a recursive type. A struct of this type
contains a pointer to another struct of the same type, and so on. We usually
use the special element of type t*, namely NULL, to indicate that we have
reached the end of the list. Sometimes (as will be the case for our use of
linked lists in stacks and queues), we can avoid the explicit use of NULL and
obtain more elegant code. The type definition is there to create the type
name list, which stands for struct list_node, so that a pointer to a list
node will be 1istx*.

There are some restriction on recursive types. For example, a declara-
tion such as

struct infinite {
int x;
struct infinite next;

}

would be rejected by the CO compiler because it would require an infinite
amount of space. The general rule is that a struct can be recursive, but
the recursion must occur beneath a pointer or array type, whose values are
addresses. This allows a finite representation for values of the struct type.
We don’t introduce any general operations on lists; let’s wait and see
what we need where they are used. Linked lists as we use them here are
a concrete type which means we do not construct an interface and a layer of
abstraction around them. When we use them we know about and exploit
their precise internal structure. This is contrast to abstract types such as

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.7

queues or stacks (see next lecture) whose implementation is hidden behind
an interface, exporting only certain operations. This limits what clients
can do, but it allows the author of a library to improve its implementation
without having to worry about breaking client code. Concrete types are
cast into concrete once and for all.

5 List segments

A lot of the operations we'll perform in the next few lectures are on segments
of lists: a series of nodes starting at start and ending at end.

data next data next data next data next

Xy Xy ¥ X,

This is the familiar structure of an “inclusive-lower, exclusive-upper” bound:
we want to talk about the data in a series of nodes, ignoring the data in
the last node. That means that, for any non-NULL list node pointer 1, a
segment from [to [is empty (contains no data). Consider the following
structure:

_—

start

data next data next data next data next

3 7 3 12 —+

al//

a3
a4

According to our definition of segments, the data in the segment from a1 to
a4 is the sequence 3, 7, 3, the data in the segment from a2 to a3 contains the
sequence 7, and the data in the segment from a1 to a1 is the empty sequence.
Note that if we compare the pointers a1 and a3 C0 will tell us they are not
equal — even though they contain the same data they are different locations
in memory.

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.8

Given an inclusive beginning point start and an exclusive ending point
end, how can we check whether we have a segment from start to end? The
simple idea is to follow next pointers forward from start until we reach end.
If we reach NULL instead of end then we know that we missed our desired
endpoint, so that we do not have a segment. (We also have to make sure
that we say that we do not have a segment if either start or end is NULL, as
that is not allowed by our definition of segments above.) We can implement
this simple idea in all sorts of ways:

Recursively

bool is_segment(list* start, list* end) {
if (start == NULL) return false;

if (start == end) return true;
return is_segment (start->next, end);
}
For loop

bool is_segment(list* start, list* end) {
for (list* p = start; p != NULL; p = p->next) {

if (p == end) return true;
}
return false;
}
While loop

bool is_segment(list* start, list* end) {
list 1 = start;
while (1 != NULL) {
if (1 == end) return true;
1 = 1->next;
}
return false;

3

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.9

However, every one of these implementations of is_segment has the
same problem: if given a circular linked-list structure, the specification
function is_segment may not terminate.

It’s quite possible to create structures like this, intentionally or uninten-
tionally. Here’s how we could create the above structure in Coin:

--> list* start = alloc(list);

--> start->data = 3;

--> start->next = alloc(list);

--> start->next->data = 7;

--> start->next->next = alloc(list);

--> start->next->next->data = 3;

--> start->next->next->next = alloc(list);
--> start->next->next->next->data = 12;
--> start->next->next->next->next = start->next;
--> 1list* end = alloc(list);

--> end->data 18;

—-> end->next = NULL;

--> is_segment(start, end);

and this is what it would look like:

data next data next data next data next
3 //’—; 7 3 12
/'
start
data next

end 18 __|+

While it is not strictly necessary, whenever possible, our specification func-
tions should return true or false rather than not terminating or raising an as-
sertion violation. We do treat it as strictly necessary that our specification
functions should always be safe — they should never divide by zero, access
an array out of bounds, or dereference a null pointer. We will see how to
address this problem in our next lecture.

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.10

6 Checking for Circularity

In order to make sure the is_segment function correctly handles the case of
cyclic loops, let’s write a function to detect whether a list segment is cyclic,
so that is_segment can call it first.

bool is_segment(list* start, list* end) {
if (!lis_acyclic(start, end)) return false; // start to end cyclic
// start to end is acyclic, check if it is a segment

One of the simplest solutions proposed in class keeps a copy of the
start pointer. Then when we advance p we run through an auxiliary loop
to check if the next element is already in the list. The code would be some-
thing like

bool is_acyclic(list start, list end)
{
list p = start;
while (p !'= end) {
if (p == NULL) return true;
for (list q = start; q != p; q = g—>next) {

if (q == p—>next) return false; /* circular */
}
p = p—>next;
}
return true;
}

Unfortunately this solution requires O(n?) time for a list with n elements,
whether it is circular or not.
Consider if you can find a better solution before reading on.

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.11

The idea for a more efficient solution was suggested in class. Create two
pointers, a fast and a slow one. Let’s name them h for Achilles and ¢ for
tortoise. The slow pointer ¢ traverses the list in single steps. Fast h, on the
other hand, skips two elements ahead for every step taken by ¢. If the faster
h starts out ahead of ¢ and ever reaches the slow ¢, then it must have gone
in a cycle. Let’s try it on our list. We show the state of ¢ and h on every
iteration.

data next
1 2 3 4
t h
6 5
data next
1 2 3 4
r Y T
h
t
6 5 I
data next
1 2 3 4
t
h=——> 6 5

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.12

data next

1 2 3

In code:

bool is_acyclic(list* start, list* end) {

if (start == NULL) return true;

list* h = start->next; // Achilles

list* t = start; // tortoise

while (h != t) {
if (h == NULL || h->next == NULL) return true;
h = h->next->next;
//@assert t != NULL; // Achilles is faster and hits NULL quicker
t = t->next;

}

//Qassert h == t;

return false;

A few points about this code: in the condition inside the loop we exploit
the short-circuiting evaluation of the logical or ‘| |” so we only follow the
next pointer for h when we know it is not NULL. Guarding against trying to
dereference a NULL pointer is an extremely important consideration when
writing pointer manipulation code such as this. The access to h->next and
h->next->next is guarded by the NULL checks in the if statement. But what
about the dereference of t in t->next? Before you turn the page: can you
figure it out?

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.13

One solution would be to add another if statement checking whether
t==NULL. That is unnecessarily inefficient, though, because the tortoise ¢,
being slower than Achilles h, will never follow pointers that Achilles has
not followed already successfully. In particular, they cannot be NULL. How
do we represent this information? One way would be to rely on our opera-
tional reasoning and insert an assert:

//@assert t != NULL; // Achilles is faster and hits NULL quicker

But as the comment indicates, it is hard to justify in logical reasoning why
this assert never fails. Can we achieve the same logically? Yes, but while
you think about how, we will first analyze the complexity of the algorithm
and resolve another mystery.

This algorithm has complexity O(n). An easy way to see this was sug-
gested by a student in class: when there is no loop, Achilles will stumble
over NULL after O(n/2) steps. If there is a loop, then consider the point
when the tortoise enters the loop. At this point, Achilles must already be
somewhere in the loop. Now for every step the tortoise takes in the loop
Achilles takes two, so on every iteration it comes one closer. Achilles will
catch the tortoise after at most half the size of the loop. Therefore the over-
all complexity of O(n): the tortoise will not complete a full trip around
the loop. In particular, whenever the algorithm returns true, it’s because
Achilles caught the tortoise, which is an obvious cycle. Yet, since, in the
cyclic case, the distance between Achilles and the tortoise strictly decreases
in each iteration, the algorithm will correctly detect all cycles.

Now, where is the mystery? When inspecting the is_acyclic function,
we are baffled why it never uses end. Indeed, is_acyclic(start, end)
correctly checks whether the NULL-terminated list beginning at start is
cyclic, but ignores the value of end entirely. Hence, is_segment (start, end),
which calls is_acyclic(start, end), will categorically return false on
any cyclic list even if the segment from start to end would still have been
acyclic.

This is actually fine for our intended use case in stacks and queues,
because we do not want them to be cyclic ever. But let’s fix the issue for
more general uses. Can you figure out how?

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.14

The idea is to let Achilles watch out for end and simply treat end as yet
another reason to stop iterating, just like NULL. If Achilles passes by end,
then the list segment from start to end cannot have been cyclic, because he
would, otherwise, have found end in his first time around the cycle already.
Note that the same argument would not quite work when, instead, tortoise
checks for end, because tortoise might have just found end before Achilles
went around the cycle already.

bool is_acyclic(list* start, list* end) {
if (start == NULL) return true;
list* h = start->next; // Achilles
list* t = start; // tortoise
while (h !'= t) {
if (h == NULL || h->next == NULL) return true;
if (h == end || h->next == end) return true;
h = h->next->next;
//@assert t != NULL; // Achilles is faster and hits NULL quicker
t = t->next;
}
//Qassert h == t;
return false;

This algorithm is a variation of what has been called the tortoise and the
hare and is due to Floyd 1967. But since it is a variation of Floyd’s algorithm
and we related it to Zeno’s paradox of Achilles and the tortoise from 2500
years ago, we will call this variation the Achilles and the tortoise algorithm.

7 Tortoise is Never NULL

Let’s get back to whether we can establish why the following assertion
holds by logical reasoning.

//@assert t != NULL; // Achilles is faster and hits NULL quicker

The loop invariant t !'= NULL may come to mind, but it is hard to prove
that it actually is a loop invariant, because, for all we know so far, t->next
may be NULL even if t is not.

The crucial loop invariant that is missing is the information that the
tortoise will be able to travel to the current position of Achilles by following

LECTURE NOTES MAY 30, 2014

Pointers & Linked Lists L09.15

next pointers. Of course, Achilles will have moved on then!, but at least
there is a chain of next pointers from the current position of the tortoise to
the current position of Achilles. This is represented by the following loop
invariant in is_acyclic:

bool is_acyclic(list* start, list* end) {
if (start == NULL) return true;
list* h = start->next; // Achilles
list* t = start; // tortoise
while (h != t)
//@loop_invariant is_segment(t, h);

{
if (h == NULL || h->next == NULL) return true;
if (h == end || h->next == end) return true;
h = h->next->next;
t = t->next;

}

//Qassert h == t;
return false;

}

As an exercise, you should prove this loop invariant. How would this in-
variant imply that ¢ is not NULL? The key insight is that the loop invariant
ensures that there is a linked list segment from ¢ to h, and the loop condi-
tion ensures t # h. Thus, if there is a link segment from ¢ to a different b,
the access t->next must work. We could specify this formally by enriching
the contract of is_segment, which is what you should do as an exercise.

Watch out for one subtle issue, though. Now the implementations and
contracts of is_acyclic and is_segment are mutually recursive. That means,
with contracts enabled (ccO -d), some calls to is_segment will never ter-
minate. This can be fixed by introducing a copy of is_segment distinguish-
ing cyclic from noncyclic segments. The key insight is from the complexity
analysis. Achilles and the tortoise will never be farther apart than the size
of the cycle.

!Isn’t that Zeno paradoxical?

LECTURE NOTES MAY 30, 2014

	Introduction
	Structs and pointers
	Pointers
	Linked Lists
	List segments
	Checking for Circularity
	Tortoise is Never NULL

