
Lecture Notes on
Arrays

15-122: Principles of Imperative Computation
Frank Pfenning, André Platzer

Lecture 3
May 21, 2014

1 Introduction

So far we have seen how to process primitive data like integers in impera-
tive programs. That is useful, but certainly not sufficient to handle bigger
amounts of data. In many cases we need aggregate data structures which
contain other data. A common data structure, in particular in imperative
programming languages, is that of an array. An array can be used to store
and process a fixed number of data elements that all have the same type.

We will also take a first detailed look at the issue of program safety.
A program is safe if it will execute without exceptional conditions which
would cause its execution to abort. So far, only division and modulus are
potentially unsafe operations, since division or modulus by 0 is defined
as a runtime error.1 Trying to access an array element for which no space
has been allocated is a second form of runtime error. Array accesses are
therefore potentially unsafe operations and must be proved safe.

With respect to our learning goals we will look at the following notions.

Computational Thinking: Developing contracts that establish the safety
of imperative programs.

Developing and evaluating proofs of the safety of code with con-
tracts.

Programming: Identifying, describing, and effectively using arrays and
for-loops.

1as is division of modulus of the minimal integer by −1

LECTURE NOTES MAY 21, 2014



Arrays L3.2

In lecture, we only discussed a smaller example of programming with
arrays, so some of the material here is a slightly more complex illustration
of how to use for loops and loop invariants when working with arrays.

2 Using Arrays

When t is a type, then t[] is the type of an array with elements of type t.
Note that t is arbitrary: we can have an array of integers (int[]), and an
array of booleans (bool[]) or an array of arrays of characters (char[][]).
This syntax for the type of arrays is like Java, but is a minor departure from
C, as we will see later in class.

Each array has a fixed size, and it must be explicitly allocated using the
expression alloc_array(t, n). Here t is the type of the array elements,
and n is their number. With this operation, C0 will reserve a piece of mem-
ory with n elements, each having type t. Let’s try in coin:

% coin

C0 interpreter (coin) 0.3.2 ’Nickel’

Type ‘#help’ for help or ‘#quit’ to exit.

--> int[] A = alloc_array(int, 10);

A is 0x603A50 (int[] with 10 elements)

-->

The result may be surprising: A is an array of integers with 10 elements
(obvious), but what does it mean to say A is 0xECE2FFF0 here? As we dis-
cussed in the lecture on integers, variables can only hold values of a small
fixed size, the word size of the machine. An array of 10 integers would be
10 times this size, so we cannot hold it directly in the variable A. Instead,
the variable A holds the address in memory where the actual array elements
are stored. In this case, the address happens to be 0xECE2FFF0 (incidentally
presented in hexadecimal notation), but there is no guarantee that the next
time you run coin you will get the same address. Fortunately, this is okay
because you cannot actually ever do anything directly with this address as
a number and never need to either. Instead you access the array elements
using the syntax A[i] where 0 ≤ i < n, where n is the length of the array.
That is, A[0] will give you element 0 of the array, A[1] will be element 1,
and so on. We say that arrays are zero-based because elements are numbered
starting at 0. For example:

--> A[0];

LECTURE NOTES MAY 21, 2014

http://www.cs.cmu.edu/~rjsimmon/15122-m14/lec/02-ints.pdf


Arrays L3.3

0 (int)

--> A[1];

0 (int)

--> A[2];

0 (int)

--> A[10];

Error: accessing element 10 in 10-element array

Last position: <stdio>:1.1-1.6

--> A[-1];

Error: accessing negative element in 10-element array

Last position: <stdio>:1.1-1.6

-->

We notice that after allocating the array, all elements appear to be 0. This
is guaranteed by the implementation, which initializes all array elements
to a default value which depends on the type. The default value of type
int is 0. Generally speaking, one should try to avoid exploiting implicit
initialization because for a reader of the program it may not be clear if the
initial values are important or not.

We also observe that trying to access an array element not in the spec-
ified range of the array will lead to an error. In this example, the valid
accesses are A[0], A[1], . . ., A[9] (which comes to 10 elements); everything
else is illegal. And every other attempt to access the contents of the array
would not make much sense, because the array has been allocated to hold
10 elements. How could we ever meaningfully ask what it’s element num-
ber 20 is if it has only 10? Nor would it make sense to ask A[-4]. In both
cases, coin and cc0 will give you an error message telling you that you
have accessed the array outside the bounds. While an error is guaranteed
in C0, in C no such guarantee is made. Accessing an array element that has
not been allocated leads to undefined behavior and, in principle, anything
could happen. This is highly problematic because implementations typi-
cally choose to just read from or write to the memory location where some
element would be if it had been allocated. Since it has not been, some other
unpredictable memory location may be altered, which permits infamous
buffer overflow attacks which may compromise your machines.

How do we change an element of an array? We can use it on the left-
hand side of an assignment. We can set A[i] = e; as long as e is an expres-
sion of the right type for an array element. For example:

--> A[0] = 5; A[1] = 10; A[2] = 20;

LECTURE NOTES MAY 21, 2014



Arrays L3.4

A[0] is 5 (int)

A[1] is 10 (int)

A[2] is 20 (int)

-->

After these assignments, the contents of memory might be displayed as
follows, where A = 0xECE2FFF0:

5	
   10	
   20	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
  

A[0]	
   A[1]	
   A[2]	
   A[3]	
   A[4]	
   A[5]	
   A[6]	
   A[7]	
   A[8]	
   A[9]	
  

F4	
   F8	
   FC	
   04	
   08	
   0C	
   10	
   14	
  0xECE2FFF0	
  
ECE30000	
  

Recall that an assignment (like A[0] = 5;) is a statement and as such
has an effect, but no value. coin will print back the effect of the assign-
ment. Here we have given three statements together, so all three effects are
shown. Again, exceeding the array bounds will result in an error message
and the program aborts, because it does not make sense to store data in an
array at a position that is outside the size of that array.

--> A[10] = 100;

Error: accessing element 10 in 10-element array

Last position: <stdio>:1.1-1.6

-->

3 Using For-Loops to Traverse Arrays

A common pattern of access and traversal of arrays is for-loops, where an
index i is counted up from 0 to the length of the array. To continue the
example above, we can assign i3 to the ith element of the array as follows:

--> for (int i = 0; i < 10; i++)

... A[i] = i * i * i;

--> A[6];

216 (int)

-->

LECTURE NOTES MAY 21, 2014



Arrays L3.5

Characteristically, the exit condition of the loop tests for i < n where i
is the array index and n is the length of the array (here 10).

After we type in the first line (the header of the for-loop), coin responds
with the prompt ... instead of -->. This indicates that the expression or
statement it has parsed so far is incomplete. We complete it by supplying
the body of the loop, the assignment A[i] = i * i * i;. Note that no
assignment effect is printed. This is because the assignment is part of a
loop. In general, coin will only print effects of top-level statements such
as assignments, because when a complicated program is executed, a huge
number of effects could be taking place.

4 Specifications for Arrays

When we use loops to traverse arrays, we need to make sure that all the ar-
ray accesses are in bounds. In many cases this is evident, but it can be tricky
in particular if we have two-dimensional data (for example, images). As an
aid to this reasoning, we state an explicit loop invariant which expresses
what will be true on every iteration of the loop.

To illustrate arrays, we develop a function that computes an array of the
first n Fibonacci numbers, starting to count from 0. It uses the recurrence:

f0 = 0

f1 = 1

fn+2 = fn+1 + fn for n ≥ 0

When we represent fn in an array as A[n], we can write the recurrence
directly as a loop operating on the array:

int[] fib(int n) {

int[] F = alloc_array(int, n);

F[0] = 0;

F[1] = 1;

for (int i = 0; i < n; i++)

F[i+2] = F[i+1] + F[i];

return F;

}

This looks straightforward. Is there a problem with the code or will it run
correctly? In order to understand whether this function works correctly, we
systematically develop a specification for it. Before you read on, can you
spot a bug in the code? Or can you find a reason why it will work correctly?

LECTURE NOTES MAY 21, 2014



Arrays L3.6

Allocating an array will also fail if we ask for a negative number of ele-
ments. Since the number of elements we ask for in alloc_array(int, n)

is n, and n is a parameter passed to the function, we need to add n ≥ 0 into
the precondition of the function. In return, the function can safely promise
to return an array that has exactly the size n. This is a property that the code
using, e.g., fib(10) has to rely on. Unless the fib function promises to re-
turn an array of a specific size, the user has no way of knowing how many
elements in the array can be accessed safely without exceeding its bounds.
Without such a corresponding postcondition, code calling fib(10) could
not even safely access position 0 of the array that fib(10) returns.

For referring to the length of an array, C0 contracts have a special func-
tion \length(A) that stands for the number of elements in the array A. Just
like the \result variable, the function \length is part of the contract lan-
guage and cannot be used in C0 program code. Its purpose is to be used in
contracts to specify the requirements and behavior of a program. For the
Fibonacci function, we want to specify the postcondition that the length of
the array that the function returns is n.

int[] fib(int n)

//@requires n >= 0;

//@ensures \length(\result) == n;

{

int[] F = alloc_array(int, n);

F[0] = 0;

F[1] = 1;

for (int i = 0; i < n; i++) {

F[i+2] = F[i+1] + F[i];

}

return F;

}

LECTURE NOTES MAY 21, 2014



Arrays L3.7

5 Loop Invariants for Arrays

By writing specifications, we should convince ourselves that all array ac-
cesses will be within the bounds. In the loop, we access F [i], which would
raise an error if i were negative, because that would violate the lower
bounds of the array. So we need to specify a loop invariant that ensures
i ≥ 0.

int[] fib(int n)

//@requires n >= 0;

//@ensures \length(\result) == n;

{

int[] F = alloc_array(int, n);

F[0] = 0;

F[1] = 1;

for (int i = 0; i < n; i++)

//@loop_invariant i >= 0;

{

F[i+2] = F[i+1] + F[i];

}

return F;

}

Clearly, if i ≥ 0 then the other array accesses F[i+1] and F[i+2] also will
not violate the lower bounds of the array, because i + 1 ≥ 0 and i + 2 ≥ 0.
Will the program work correctly now?

LECTURE NOTES MAY 21, 2014



Arrays L3.8

The big issue with the code is that, even though the code ensures that
no array access exceeds the lower bound 0 of the array F, we do not know
whether the upper bounds of the array i.e., \length(F), which equals n, is
always respected. For each array access, we need to ensure that it is within
the bounds. In particular, we need to ensure i < n for array access F[i] and
the condition i+ 1 < n for array access F[i+1] and the condition i+ 2 < n
for F[i+2]. But this condition does not work out, because the loop body
also runs when i = n − 1, at which point i + 2 = (n − 1) + 2 = n + 1 < n
does not hold, because we have allocated array F to have size n.

We can also easily observe this bug by using coin.

% coin fibc.c0 -d

Coin 0.2.9 ’Penny’(r10, Fri Jan 6 22:08:54 EST 2012)

Type ‘#help’ for help or ‘#quit’ to exit.

--> fib(5);

Error: accessing element 5 in 5-element array

Last position: fibc.c0:11.7-11.30

fib from <stdio>:1.1-1.7

Consequently, we need to stop the loop earlier and can only continue as
long as i+ 2 < n. Since the loop condition in a for loop can be any boolean
expression, we could trivially ensure this by changing the loop as follows:

int[] fib(int n)

//@requires n >= 0;

//@ensures \length(\result) == n;

{

int[] F = alloc_array(int, n);

F[0] = 0;

F[1] = 1;

for (int i = 0; i+2 < n; i++)

//@loop_invariant i >= 0;

{

F[i+2] = F[i+1] + F[i];

}

return F;

}

LECTURE NOTES MAY 21, 2014



Arrays L3.9

Since it can be more convenient to see the exact bounds of a for loop, we
can replace the loop condition i+ 2 < n by i < n − 2 since both are equiv-
alent. It does not make much difference, which one we use, but the latter
can be more intuitive to determine how long a loop iterates to complete.

int[] fib(int n)

//@requires n >= 0;

//@ensures \length(\result) == n;

{

int[] F = alloc_array(int, n);

F[0] = 0;

F[1] = 1;

for (int i = 0; i < n-2; i++)

//@loop_invariant i >= 0;

{

F[i+2] = F[i+1] + F[i];

}

return F;

}

This program looks good and will behave well after a number of tests.
Is it correct? Before you read on, find an answer yourself.

LECTURE NOTES MAY 21, 2014



Arrays L3.10

When we verify the previous program, we suddenly realize that there
are two array accesses for which we have not yet convinced ourselves that
they will access within bounds. The two array accesses F[0] and F[1] be-
fore the loop. And in fact, they may fail when we run coin.

We can also easily exhibit this bug with coin on either fibe.c0 or fibd.c0

% coin fibe.c0 -d

Coin 0.2.9 ’Penny’(r10, Fri Jan 6 22:08:54 EST 2012)

Type ‘#help’ for help or ‘#quit’ to exit.

--> fib(5);

0xFF4FF780 (int[] with 5 elements)

--> fib(2);

0xFF4FF760 (int[] with 2 elements)

--> fib(1);

Error: accessing element 1 in 1-element array

Last position: fibe.c0:7.3-7.12

fib from <stdio>:1.1-1.7

--> fib(0);

Error: accessing element 0 in 0-element array

Last position: fibe.c0:6.3-6.12

fib from <stdio>:1.1-1.7

-->

To solve this issue we add tests that only run them if the array is big
enough to contain that entry.

See fibf.c0

int[] fib(int n)

//@requires n >= 0;

//@ensures \length(\result) == n;

{

int[] F = alloc_array(int, n);

if (n > 0) F[0] = 0; /* line 0 */

if (n > 1) F[1] = 1; /* line 1 */

for (int i = 0; i < n-2; i++)

//@loop_invariant i >= 0;

{

F[i+2] = F[i+1] + F[i]; /* line 2 */

}

return F;

}

LECTURE NOTES MAY 21, 2014



Arrays L3.11

6 Proving Correctness: Loop Invariants

The loop invariant states a property that must be true just before the exit
condition is tested. Variable i is initialized to 0 with i = 0 when the for
loop begins. Clearly, i is incremented each time around the loop (with
the step statement i++ which is the same as i = i+1), so i will always be
greater or equal to 0. Let us prove this precisely.

Init: When we enter the loop for the first time, the for loop initialization
assigns i = 0 so i ≥ 0.

Preservation: Assume that i ≥ 0 (the loop invariant) when we enter the
loop, we have to show it still holds after we traverse the loop body
once. We obtain the next value of the loop by executing i = i+1 so
the new value of i, written i′, will only be bigger, so it must still be
greater of equal to 0, thus i′ = i+ 1 ≥ 0.

A subtle point: we are in two’s complement arithmetic, but i+ 1 can-
not overflow since i is bounded from above by n− 2.

7 Proving Correctness: Array Bounds

Now we have verified the loop invariant but still need to verify that all
array accesses are guaranteed to be in bounds, otherwise the program still
would not run correctly.

1. In line 0 we assign to F[0]. If the length of the array F (which is n)
were 0, this would be out of bounds. But we check that n > 0 in the
if statement so that the assignment only takes place if there is at least
one element in the array, labeled F[0].

2. Similarly, in line 1 we access F[1], but this is okay because we only
access it if n > 1.

3. In line 2, we access F[i+2], F[i+1] and F[i]. By the loop invariant
we know that i + 2, i + 1, and i are all greater than or equal to 0,
because i ≥ 0. Since we only enter the loop body if the loop condition
i < n − 2 holds, and n is the length of array, we also know that i + 2
is less than the length of the array (and so are i+1 and i because they
are only smaller). So all three accesses must always be in bounds.

LECTURE NOTES MAY 21, 2014



Arrays L3.12

In the last case, we do not reason about how the loop operates but rely
solely on the loop invariant and loop condition instead. This is crucial,
since the loop invariant and condition are supposed to contain all the rele-
vant information about the relevant effect of the loop. In particular, our rea-
soning about the array accesses does not depend on understanding what
exactly the loop does after, say, 5 iterations or where i started and how it
evolved since. All that matters is whether we can conclude from the loop
invariant i ≥ 0 and the loop condition i < n − 2 that the array accesses
are okay. In this way, loop invariants have the effect of entirely localizing
our reasoning to one general scenario to consider for the loop body. This is
how loop invariants can greatly simplify our understanding of programs
and ensure we have implemented them correctly.

Similar effects occur in other scenarios where our understanding of the
behavior of loops becomes entirely focused on a local question of a sin-
gle behavior just by virtue of being able to reason from the loop invariant.
Needless to say, before we use a loop invariant in our reasoning about the
behavior of the code, we should convince ourselves that the loop invariant
is correct by a proof.

8 Aliasing

We have seen assignments to array elements, such as A[0] = 0;. But we
have also seen assignments to array variables themselves, such as

int[] A = alloc_array(int, n);

What do they mean? To explore this, we separate the declaration of
array variables (here: F and G) from assignments to them.

% coin -d fibf.c0

Coin 0.2.9 ’Penny’(r10, Fri Jan 6 22:08:54 EST 2012)

Type ‘#help’ for help or ‘#quit’ to exit.

--> int[] F;

--> int[] G;

--> F = fib(15);

F is 0xF6969A80 (int[] with 15 elements)

--> G[2];

Error: uninitialized value used

Last position: <stdio>:1.1-1.5

--> G = F;

LECTURE NOTES MAY 21, 2014



Arrays L3.13

G is 0xF6969A80 (int[] with 15 elements)

--> G = fib(10);

G is 0xF6969A30 (int[] with 10 elements)

-->

The first assignment to F is as expected: it is the address of an array
of Fibonacci numbers with 15 elements. The use of G in G[2], of course,
cannot succeed, because we have only declared G to have a type of integer
arrays, but did not assign any array to G.

Afterwards, however, when we assign G = F, then G and F (as vari-
ables) hold the same address! Holding the same address means that F and G
are aliased. When we make the second assignment to G (changing its value)
we get a new array, which is in fact smaller and definitely no longer aliased
to F (note the different address). Aliasing (or the lack thereof) is crucial, be-
cause modifying one of two aliased arrays will also change the other. For
example:

% coin

Coin 0.2.9 ’Penny’(r10, Fri Jan 6 22:08:54 EST 2012)

Type ‘#help’ for help or ‘#quit’ to exit.

--> int[] A = alloc_array(int, 5);

A is 0xE8176FF0 (int[] with 5 elements)

--> int[] B = A;

B is 0xE8176FF0 (int[] with 5 elements)

--> A[0] = 42;

A[0] is 42 (int)

--> B[0];

42 (int)

-->

C0 has no built-in way to copy from one array to another (ultimately
we will see that there are multiple meaningful ways to copy arrays of more
complicated types). Here is a simple function to copy arrays of integers.

/* file copy.c0 */

int[] array_copy(int[] A, int n)

//@requires 0 <= n && n <= \length(A);

//@ensures \length(\result) == n;

{

int[] B = alloc_array(int, n);

LECTURE NOTES MAY 21, 2014



Arrays L3.14

for (int i = 0; i < n; i++)

//@loop_invariant 0 <= i;

B[i] = A[i];

return B;

}

For example, we can create B as a copy of A, and now assigning to the copy
of B will not affect A. We will invoke coin with the -d flag to make sure
that if a pre- or post-condition or loop invariant is violated we get an error
message.

% coin copy.c0 -d

Coin 0.2.9 ’Penny’(r10, Fri Jan 6 22:08:54 EST 2012)

Type ‘#help’ for help or ‘#quit’ to exit.

--> int[] A = alloc_array(int, 10);

A is 0xF3B8DFF0 (int[] with 10 elements)

--> for (int i = 0; i < 10; i++) A[i] = i*i;

--> int[] B = array_copy(A, 10);

B is 0xF3B8DFB0 (int[] with 10 elements)

--> B[9];

81 (int)

--> A[9] = 17;

A[9] is 17 (int)

--> B[9];

81 (int)

-->

LECTURE NOTES MAY 21, 2014



Arrays L3.15

Exercises

Exercise 1 Write a function array_part that creates a copy of a part of a given
array, namely the elements from position i to position j. Your function should have
prototype

int[] array_part(int[] A, int i, int j);

Develop a specification and loop invariants for this function. Prove that it works
correctly by checking the loop invariant and proving array bounds.

Exercise 2 Write a function copy_into that copies a part of a given array source,
namely n elements starting at position i, into another given array target, starting
at position j. Your function should have prototype

int copy_into(int[] source, int i, int n, int[] target, int j);

As an extra service, make your function return the last position in the target ar-
ray that it entered data into. Develop a specification and loop invariants for this
function. Prove that it works correctly by checking the loop invariant and proving
array bounds. What is difficult about this case?

Exercise 3 Write a function can_copy_into that returns an integer indicating
how many elements, starting from position i, of an array source of a given length
n can be copied safely into a part of a given array target starting at position j, into
another given array, starting at position j. Your function should have prototype

int can_copy_into(int[] source, int i, int[] target, int j, int n);

Develop a specification and loop invariants for this function. Prove that it works
correctly by checking the loop invariant and proving array bounds. The num-
ber returned by can_copy_into should be compatible with the specification of
copy_into. Which calls to copy_into are guaranteed to work correctly after a
call of

int r = can_copy_into(source, i, target, j, n);

Exercise 4 Can you develop a reasonable (non-degenerate) and useful function
with the following prototype? Discuss.

int f(int[] A);

LECTURE NOTES MAY 21, 2014


	Introduction
	Using Arrays
	Using For-Loops to Traverse Arrays
	Specifications for Arrays
	Loop Invariants for Arrays
	Proving Correctness: Loop Invariants
	Proving Correctness: Array Bounds
	Aliasing

