
15-122 Homework 5 Page 1 of 15

15-122 : Principles of Imperative Computation, Summer 1 2014

Written Homework 5

Due: Thursday, June 19 before recitation

Name:

Andrew ID:

Recitation:

Binary search trees, AVL trees, heaps, priority queues, and more heaps.

Question Points Score

1 10

2 7

3 8

4 4

5 6

Total: 35

You must print this PDF and write your answers neatly by hand.

You should hand in the assignment before recitation begins.

15-122 Homework 5 Page 2 of 15

Part I: High Up in a Tree

For questions 1 and 2, we define the height of a tree as the number of nodes on the
longest path between the root and a leaf, inclusive. For example, the empty tree has
height 0, a tree with 1 node has height 1, and a balanced tree with 3 nodes has height 2.

1. Binary Search Trees

(a)(1) Draw the binary search tree that results from inserting the following keys in the
order given. Be sure all branches in your tree are drawn clearly so we can distinguish
left branches from right branches.

75, 92, 99, 13, 84, 42, 71, 98, 73, 20

Solution:

(b)(1) How many different binary search trees can be constructed using the following five
keys if they can be inserted in any order?

73, 28, 52, −9, 104

Solution:

15-122 Homework 5 Page 3 of 15

(c) For the following questions, you should refer to the implementation of binary search
trees discussed in class. The code is available on the course website.

i.(3) Write the function bst_height which returns the height of the given BST, as
per the definition given on page 2. Your function must include a recursive
helper function tree_height.
(Hint : the height of a tree is one more than the height of its deepest subtree.)

Solution:
int tree_height(tree* T)

//@requires is_ordered(T, NULL, NULL);

{

}

int bst_height(bst B)

//@requires is_bst(B);

//@ensures is_bst(B);

{

return __;

}

ii.(1) Complete the code for the function largest_child which removes and returns
the largest child rooted at a given tree node T.

Solution:
elem largest_child(tree* T)

//@requires T != NULL && T->right != NULL;

{

if (T->right->right == NULL) {

elem e = _________________________________;

T->right = ____________________________________;

return e;

}

return largest_child(________________________________);

}

15-122 Homework 5 Page 4 of 15

iii.(4) Consider extending the BST library implementation with the following function
which deletes an element from the tree with the given key.

void bst_delete(bst B, key k)

//@requires is_bst(B);

//@ensures is_bst(B);

{

B->root = tree_delete(B->root, key k);

}

Complete the code for the recursive helper function tree_delete which is used
by the bst_delete function. This function should return a pointer to the tree
rooted at T once the key is deleted (if it is in the tree).

Solution:
tree* tree_delete(tree* T, key k)

{

if (T == NULL)

// key is not in the tree

return _______________________________;

if (key_compare(k, elem_key(T->data)) < 0) {

_______________________ = tree_delete(T->left, k);

return T;

}

else if (key_compare(k, elem_key(T->data)) > 0) {

_______________________ = tree_delete(T->right, k);

return T;

}

else {

// key is in current tree node T

if (T->left == NULL)

return ________________________;

else if (T->right == NULL)

return ________________________;

else {

// continued on next page...

15-122 Homework 5 Page 5 of 15

// T has two children

if (T->left->right == NULL) {

// Replace T’s data with the left child’s data.

___;

// Replace the left child with its left child.

___;

return T;

}

else {

// Search for the largest child in the

// left subtree of T and replace the data

// in node T with this data after removing

// the largest child in the left subtree.

T->data = largest_child(T->left);

return T;

}

}

}

}

15-122 Homework 5 Page 6 of 15

2. AVL Trees.

(a)(3) Insert the following values into an initially empty AVL tree one at a time in the
order shown. Draw the final state of the AVL tree after each insert is completed
and the tree is restored back to its proper invariants (do not draw the intermediate
steps of any rebalancing operations). Your answer should show exactly 7 clearly
drawn trees.

89, 79, 45, 58, 10, 63, 31

Solution:

15-122 Homework 5 Page 7 of 15

(b) We want to determine upper and lower bounds on the number of nodes in an AVL
tree of a certain height. Let m(h) be the minimum number of nodes in a valid
AVL tree of height h. Let M(h) be similarly defined for the maximum number of
nodes.

i.(2) Fill in the table below relating the values h and m(h):

h m(h)

0 0

1 1

2 2

3

4

5

6

ii.(1) Guided by the table in part (i), complete the recursive definition of m(h). The
base cases have been completed for you. (Hint : think Fibonacci.)

Solution:

m(h) =


0 if h = 0

1 if h = 1

if h ≥ 2

iii.(1) Give a closed form expression for M(h).

Solution:

M(h) =

15-122 Homework 5 Page 8 of 15

Part II: Heaps of Work

3. Piles of Theory

As discussed in class, a min-heap is a hierarchical data structure that satisfies two
invariants:

Order: Every child has value greater than or equal to its parent.

Shape: Each level of the min-heap is completely full except possibly the last
level, which has all of its elements stored as far left as possible. (Also known
as a complete binary tree).

Consider:

(a)(1) Draw a picture of the final state of the min-heap after an element with value 5 is
inserted. Be sure to satisfy both of the data structure invariants for a min-heap.

Solution:

(b)(1) Starting from the original min-heap above, draw a picture of the final state of the
min-heap after the element with the minimum value is deleted. Be sure to satisfy
both of the data structure invariants for a min-heap.

Solution:

15-122 Homework 5 Page 9 of 15

(c)(2) Insert the following values into an initially empty min-heap one at a time in the
order shown. Draw the final state of the min-heap after each insert is completed
and the min-heap is restored back to its proper invariants. Your answer should
show 8 clearly drawn heaps.

42, 19, 71, 38, 20, 6, 55, 10

Solution:

15-122 Homework 5 Page 10 of 15

(d)(1) Assume a heap is stored in an array as discussed in class. Using the final min-heap
from your previous answer, show where each element would be stored in the array.
You may not need to use all of the array positions shown below.

Solution:

(e)(1) You are given a non-empty min-heap. In one sentence, describe precisely where the
maximum value must be located. Do not assume the heap is implemented as an
array. (Your vocabulary should pertain only to the tree definition of a heap).

Solution:

(f)(1) What is the worst-case runtime complexity of finding the maximum in a min-heap
if the min-heap has n elements? Why?

Solution: O()

Because the number of values that need to be examined is:

(g)(1) We are given an array A of n integers. Consider the following sorting algorithm:

• Insert every integer from A into a min-heap.

• Repeatedly delete the minimum from the heap, storing the deleted values back
into A from left to right.

What is the worst-case runtime complexity of this algorithm, using Big-O notation?
Briefly explain your answer.

Solution: O()

15-122 Homework 5 Page 11 of 15

4. Jumbles of Code

Refer to the implementation of heaps discussed in class that is available on our course
website.

(a)(2) Add a meaningful assertion about H to each of the functions below.

Solution:

void pq_insert(heap H, elem e)

//@requires is_heap(H) && !pq_full(H);

//@ensures is_heap(H);

{

H->data[H->next] = e;

(H->next)++;

//@assert __;

int i = H->next - 1;

while (i > 1 && priority(H, i) < priority(H, i/2))

//@loop_invariant 1 <= i && i < H->next;

//@loop_invariant is_heap_except_up(H, i);

{

swap(H->data, i, i/2);

i = i/2;

}

//@assert is_heap(H);

return;

}

elem pq_delmin(heap H)

//@requires is_heap(H) && !pq_empty(H);

//@ensures is_heap(H);

{

int n = H->next;

elem min = H->data[1];

H->data[1] = H->data[n-1];

H->next = n-1;

if (H->next > 1) {

//@assert ___;

sift_down(H, 1);

}

return min;

}

15-122 Homework 5 Page 12 of 15

(b)(1) Complete the function pq_max, that returns (but does not remove) the element with
the maximum value from a min-heap stored as an array. You should examine only
those elements that might contain the maximum.

Solution:

elem heap_max(heap H)

//@requires is_heap(H) && !pq_empty(H);

//@ensures is_heap(H);

{

int max = ______________________________;

for (int i = ____________________; i < __________________; i++)

if (priority(H, i) > priority(H, max)) max = i;

return ______________________________;

}

15-122 Homework 5 Page 13 of 15

(c)(1) The library function pq_build, shown below, takes an array of data elements (ig-
noring index 0 of the array) and builds our array-based min-heap in place. That
is, it uses the given array inside of the heap structure rather than allocating a new
array.

heap pq_build(elem[] E, int n)

//@requires 0 < n && n <= \length(E);

//@ensures is_heap(\result);

{

heap H = alloc(struct heap_header);

H->limit = n;

H->next = 1;

H->data = E;

for (int i = 1; i < n; i++)

pq_insert(H, E[i]);

return H;

}

This code disrespects the boundary between the client and the library. Complete
the function build_broken_heap below such that the postcondition will always
succeed.

Solution:

heap build_broken_heap(int[] E, int n)

//@requires 3 <= n && n <= \length(E);

//@ensures !is_heap(\result);

{

heap H = pq_build(E, n);

E[1] = ____________________;

E[2] = ____________________;

return H;

}

15-122 Homework 5 Page 14 of 15

5. Priority Queues

(a)(4) You are working an exciting desk job as a stock market analyst. You want to be able
to determine the total sum value of all of the top stocks at any time. However, since
the year is 1983, your Commodore 64 can only offer up about 30 KB of memory.

Stock reports are delivered to you via a stream data type with the following inter-
face:

struct stock_report {

string company;

int value; // stock value in whole dollars

};

typedef struct stock_report* report;

// Retrieve the next stock report from the data stream

report get_report(stream S);

// Returns true if the data stream is empty

bool stream_empty(stream S);

A stream of stock reports could be very, very large. Storing all of the reports in an
array won’t cut it – you don’t have enough memory (30 KB isn’t even enough to
store 2000 reports). You’ll need a more clever solution.

Luckily, your cubicle mate Jim just finished a stellar heap implementation with the
interface below. You think you should be able to use Jim’s priority queue to keep
track of only the largest stock reports, discarding the smaller ones as necessary.

// Client Interface

typedef _________ elem;

int elem_priority(elem e) /*@requires e != NULL; @*/;

// Library Interface

typedef _________ pq;

pq pq_new(int capacity) /*@requires capacity > 0; @*/;

bool pq_full(pq Q);

bool pq_empty(pq Q);

void pq_insert(pq Q, elem e) /*@requires !pq_full(Q) && e != NULL; @*/;

elem pq_delmin(pq Q) /*@requires !pq_empty(Q); @*/;

elem pq_min(pq Q) /*@requires !pq_empty(Q); @*/;

Complete the function total_value on the next page, which returns the sum of
the values of the top n reports from the data stream S (by “top” reports, we mean
those with the largest monetary value). Oh, and don’t forget to implement the
client interface for the priority queue!

15-122 Homework 5 Page 15 of 15

Solution:

typedef __________________ elem;

int elem_priority(elem e) {

return ____________________________________;

}

int total_value(stream S, int n) {

pq Q = pq_new(____________________);

while (!stream_empty(S)) {

// Put the next stock report into the priority queue

// If the priority queue is at capacity, delete the

// report with the smallest value

if (___)

__

}

// Add up the values of all reports in the priority queue

int total = 0;

while (__) {

total += _______________________________________;

}

return total;

}

(b)(2) When does a priority queue behave like a stack? (Hint : think about how priorities
must be assigned to elements that are inserted into the priority queue.)

Solution:

