
15-122: Principles of Imperative Computation

Recitation 23 Rob Simmons

o	
  

b	
  

e	
  

e	
  

r	
  

d	
  

a	
  

c	
  

First	
  Character	
  

Second	
  Character	
  

Third	
  Character	
  

Multi-way tries

Ternary search tries have the following invariants:

• The left and right of a trie node act as a BST. In other words, for any tnode T, IGNORING
middle pointers, every tnode in the T->left subtree represents a character whose ASCII value
is less than T->c, and every tnode in the T->right subtree represents a character whose ASCII
value is greater than T->c.

• For any tnode T, T->middle is a valid tnode.

• If, for some tnode T, T->middle == NULL, then T->elem must not be NULL (otherwise this trie
would not be a prefix for any element!).

The same tnode_lookup funciton in the implementation can be used to implement both trie_member
(the given string is in the trie) and trie_prefix (this string is a proper prefix of a string in the trie).

1 tnode ∗tnode_lookup(tnode ∗T, char ∗s, size_t i) {
2 REQUIRES(is_tnode_root(T) && s != NULL && i < strlen(s));
3
4
5
6
7
8
9

10
11
12
13 }
14
15 bool trie_member(trie TR, char ∗s) {
16 REQUIRES(is_trie(TR) && s != NULL && strlen(s) > 0);
17 tnode ∗T = tnode_lookup(TR−>root, s, 0);
18 return T != NULL && T−>is_end;
19 }
20
21 bool trie_prefix(trie TR, char ∗s) {
22 REQUIRES(is_trie(TR) && s != NULL && strlen(s) > 0);
23 tnode ∗T = tnode_lookup(TR−>root, s, 0);
24 return T != NULL && T−>middle != NULL;
25 }



Definition-as-use
In C0, all variable declarations were comprised of a type and a variable name.

the type (int pointer) the variable name (myptr)
vvvv vvvvv
int* myptr;

In C, you have to think about declarations differently: as a base type and a pattern describing how the
variable name is used.

the type (int) it is used by deferencing (myptr)
vvv vvvvvv
int *myptr;

On one level, this is just a stylistic difference: C isn’t that whitespace sensitive. But there are two places
where this makes a critical difference.

Checkpoint 0
One one line, declare an integer i, a pointer to an integer p, and an array of pointers to integers A.

int ;

Checkpoint 1
You can define and use a function pointer like this:

1 typedef int string_hasher(char ∗s);
2
3 int hash_string(char ∗s) { REQUIRES(s != NULL); ... }
4
5 int main() {
6 string_hasher ∗f = &hash_string;
7 printf("Hash of ’hello world’: %d\n", (∗f)("hello world"));
8 }

Using the idea of definition-as-use, declare f in the example above without using the intermediate
typedef.

= &hash_string;

Checkpoint 2
Consider the following:

1 typedef int compare(void ∗x, void ∗y);
2 void sort(void ∗∗A, int len, compare ∗F);
3 // requires A != NULL
4 // requires \length(A) == len
5 // requires compare != NULL

How would you use this procedure to sort an array of strings? How would you write a generic implementa-
tion of sort using the selection sort algorithm from earlier in the semester? Which of these preconditions
could we actually check in the sort function, and how?


