1
2
3
4
5
6
7
8

9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25

15-122: Principles of Imperative Computation

Recitation 23 Rob Simmons
Jb First Character
Multi-way tries \J
(e
l Second Character
———_’_____,———" e r
[
a
Third Character
z// e
[
c d

T
Ternary search tries have the following invariants:

e The left and right of a trie node act as a BST. In other words, for any tnode T, IGNORING
middle pointers, every tnode in the T->left subtree represents a character whose ASCII value
is less than T->c, and every tnode in the T->right subtree represents a character whose ASCII
value is greater than T->c.

e For any tnode T, T->middle is a valid tnode.

e If, for some tnode T, T->middle == NULL, then T->elem must not be NULL (otherwise this trie
would not be a prefix for any element!).

The same tnode_lookup funciton in the implementation can be used to implement both trie_member
(the given string is in the trie) and trie_prefix (this string is a proper prefix of a string in the trie).

tnode xtnode_lookup(tnode =T, char xs, size_t i) {
REQUIRES(is_tnode_root(T) && s != NULL && i < strlen(s));

}

bool trie_member(trie TR, char xs) {
REQUIRES(is_trie(TR) && s != NULL && strlen(s) > 0);
tnode *T = tnode_lookup(TR—>root, s, 0);
return T != NULL && T—>is_end;

}

bool trie_prefix(trie TR, char xs) {
REQUIRES(is_trie(TR) && s != NULL && strlen(s) > 0);
tnode *T = tnode_lookup(TR—>root, s, 0);
return T != NULL && T—>middle != NULL;

}



O ~NOOT s WN -

a s W=

Definition-as-use
In CO, all variable declarations were comprised of a type and a variable name.

the type (int pointer) the variable name (myptr)
VVVYV VVVVV
int* myptr;

In C, you have to think about declarations differently: as a base type and a pattern describing how the
variable name is used.

the type (int) it is used by deferencing (myptr)
VAR’ VVVVVV
int *myptr;

On one level, this is just a stylistic difference: C isn’t that whitespace sensitive. But there are two places
where this makes a critical difference.

Checkpoint 0

One one line, declare an integer i, a pointer to an integer p, and an array of pointers to integers A.

int 5

Checkpoint 1

You can define and use a function pointer like this:

typedef int string_hasher(char xs);
int hash_string(char *s) { REQUIRES(s '= NULL); ... }

int main() {

string_hasher xf = &hash_string;

printf("Hash of "hello world’: %d\n", (xf)("hello world"));
}

Using the idea of definition-as-use, declare f in the example above without using the intermediate
typedef.

= &hash_string;

Checkpoint 2

Consider the following:

typedef int compare(void xx, void xy);
void sort(void xxA, int len, compare xF);
// requires A != NULL

// requires \length(A) == len

// requires compare != NULL

How would you use this procedure to sort an array of strings? How would you write a generic implementa-
tion of sort using the selection sort algorithm from earlier in the semester? Which of these preconditions
could we actually check in the sort function, and how?



