15-122: Principles of Imperative Computation

Recitation Week 9 Nivedita Chopra, Josh Zimmerman

Visualizing AVL trees

Use the visualization at http://www.cs.usfca.edu/ galles/visualization/AVLtree.html to in-
sert these keys into the tree in the following order:

1,2,5,3,4

Then delete the keys 2 and 4.

Two ways of doing rotations

Remember to draw pictures! The way we did rotations in class used the common trick of returning a
new root from the function. This made the function easier to write.

1 treex rotate_left(treex T)

2 //@requires is_tree(T) & T != NULL && T—>right != NULL;
3 //@ensures is_tree(\result);

4 {

treex R =

5
6
7
8
9
10
11
12
13
14
15
16 }

With a bit more work, we can write a rotate function that keeps the root the same as it was before; this
means we don't have to return a new root. Are any of the lines below unnecessary?
1 void rotate_left(treex T)

2 //@requires is_tree(T) & T != NULL && T—>right != NULL;
3 //@ensures is_tree();

4 {

5 elem x = T—>data;

6 elemy = T—>right—>data;

7 treex A = T—>left;

8 treex B = T—>right—>left;

9 treex C = T—>right—>right;

10

11 T-—>data = ;
12 T—>left = ;

13 T—>left—>data = ;
14 T—>left—>left = ;
15 T—>left—>right = ;
16 T—>right = ;
17 fix_height();
18 fix_height();
19 }

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

AVL rotations

In each of the cases below, draw what goes in the

treex rebalance_right(treex T)

//@requires T != NULL && T—>right != NULL;

//@requires is_tree(T—>left) && is_tree(T—>right);

// Not specified: T was balanced before an AVL insertion into T—>right
//@ensures is_tree(\result);

{
if (height(T—>right) — height(T—>left) == 2) {
if (height(T—>right—>left) > height(T—>right—>right)) {

} else {
//@assert height(T—>right—>left) < height(T—>right—>right);

}
} else {
fix_height(T);
)

return T;

}

Checkpoint 0

The correctness of the rebalance function above depends on the invariant that we didn't write as a
checked precondition: if the tree is unbalanced, then the right subtree results from a single BST insertion
(no rebalancing) into a previously-balanced AVL tree.

What are some inputs that satisfy the preconditions on lines 2 and 3 but violate this (unchecked)
precondition and cause a contract to fail as a result? How could we add a simple precondition that would
exclude this counterexample?

Checkpoint 1
Write a recursive function that finds the maximum element in a BST.

Write a non-recursive function that finds the maximum element in a BST.

