
15-122: Principles of Imperative Computation

Recitation Week 9 Nivedita Chopra, Josh Zimmerman

Visualizing AVL trees
Use the visualization at http://www.cs.usfca.edu/~galles/visualization/AVLtree.html to in-
sert these keys into the tree in the following order:

1, 2, 5, 3, 4

Then delete the keys 2 and 4.

Two ways of doing rotations
Remember to draw pictures! The way we did rotations in class used the common trick of returning a
new root from the function. This made the function easier to write.

1 tree∗ rotate_left(tree∗ T)
2 //@requires is_tree(T) && T != NULL && T−>right != NULL;
3 //@ensures is_tree(\result);
4 {
5 tree∗ R =

6
7
8
9

10
11
12
13
14
15
16 }

With a bit more work, we can write a rotate function that keeps the root the same as it was before; this
means we don’t have to return a new root. Are any of the lines below unnecessary?

1 void rotate_left(tree∗ T)
2 //@requires is_tree(T) && T != NULL && T−>right != NULL;
3 //@ensures is_tree();
4 {
5 elem x = T−>data;
6 elem y = T−>right−>data;
7 tree∗ A = T−>left;
8 tree∗ B = T−>right−>left;
9 tree∗ C = T−>right−>right;

10
11 T−>data = ;

12 T−>left = ;

13 T−>left−>data = ;
14 T−>left−>left = ;
15 T−>left−>right = ;
16 T−>right = ;
17 fix_height();

18 fix_height();
19 }

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

AVL rotations
In each of the cases below, draw what goes in the

1 tree∗ rebalance_right(tree∗ T)
2 //@requires T != NULL && T−>right != NULL;
3 //@requires is_tree(T−>left) && is_tree(T−>right);
4 // Not specified: T was balanced before an AVL insertion into T−>right
5 //@ensures is_tree(\result);
6 {
7 if (height(T−>right) − height(T−>left) == 2) {
8 if (height(T−>right−>left) > height(T−>right−>right)) {
9

10
11
12
13
14
15
16
17 } else {
18 //@assert height(T−>right−>left) < height(T−>right−>right);
19
20
21
22
23
24
25
26
27 }
28 } else {
29 fix_height(T);
30 }
31 return T;
32 }

Checkpoint 0
The correctness of the rebalance function above depends on the invariant that we didn’t write as a
checked precondition: if the tree is unbalanced, then the right subtree results from a single BST insertion
(no rebalancing) into a previously-balanced AVL tree.

What are some inputs that satisfy the preconditions on lines 2 and 3 but violate this (unchecked)
precondition and cause a contract to fail as a result? How could we add a simple precondition that would
exclude this counterexample?

Checkpoint 1
Write a recursive function that finds the maximum element in a BST.

Write a non-recursive function that finds the maximum element in a BST.

